Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2009

01.08.2009

Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis

verfasst von: Silvia Daun, Jonathan E. Rubin, Ilya A. Rybak

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Central pattern generators (CPGs) consisting of interacting groups of neurons drive a variety of repetitive, rhythmic behaviors in invertebrates and vertebrates, such as arise in locomotion, respiration, mastication, scratching, and so on. These CPGs are able to generate rhythmic activity in the absence of afferent feedback or rhythmic inputs. However, functionally relevant CPGs must adaptively respond to changing demands, manifested as changes in oscillation period or in relative phase durations in response to variations in non-patterned inputs or drives. Although many half-center CPG models, composed of symmetric units linked by reciprocal inhibition yet varying in their intrinsic cellular properties, have been proposed, the precise oscillatory mechanisms operating in most biological CPGs remain unknown. Using numerical simulations and phase-plane analysis, we comparatively investigated how the intrinsic cellular features incorporated in different CPG models, such as subthreshold activation based on a slowly inactivating persistent sodium current, adaptation based on slowly activating calcium-dependent potassium current, or post-inhibitory rebound excitation, can contribute to the control of oscillation period and phase durations in response to changes in excitatory external drive to one or both half-centers. Our analysis shows that both the sensitivity of oscillation period to alterations of excitatory drive and the degree to which the duration of each phase can be separately controlled depend strongly on the intrinsic cellular mechanisms involved in rhythm generation and phase transitions. In particular, the CPG formed from units incorporating a slowly inactivating persistent sodium current shows the greatest range of oscillation periods and the greatest degree of independence in phase duration control by asymmetric inputs. These results are explained based on geometric analysis of the phase plane structures corresponding to the dynamics for each CPG type, which in particular helps pinpoint the roles of escape and release from synaptic inhibition in the effects we find.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Brown, T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London Series B, 84, 308–319.CrossRef Brown, T. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London Series B, 84, 308–319.CrossRef
Zurück zum Zitat Brown, T. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology, 48, 18.PubMed Brown, T. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology, 48, 18.PubMed
Zurück zum Zitat Butera, R., Rinzel, J., & Smith, J. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397. Butera, R., Rinzel, J., & Smith, J. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397.
Zurück zum Zitat Calabrese, R. (1995). Half-center oscillators underlying rhythmic movements. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 444–447). Cambridge: MIT. Calabrese, R. (1995). Half-center oscillators underlying rhythmic movements. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 444–447). Cambridge: MIT.
Zurück zum Zitat Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM Journal on Applied Dynamical Systems, 7, 609–649.CrossRef Curtu, R., Shpiro, A., Rubin, N., & Rinzel, J. (2008). Mechanisms for frequency control in neuronal competition models. SIAM Journal on Applied Dynamical Systems, 7, 609–649.CrossRef
Zurück zum Zitat Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228, 143–149.PubMedCrossRef Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228, 143–149.PubMedCrossRef
Zurück zum Zitat Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.PubMedCrossRef Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.PubMedCrossRef
Zurück zum Zitat Halbertsma, J. (1983). The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica Supplementum, 521, 1–75.PubMed Halbertsma, J. (1983). The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica Supplementum, 521, 1–75.PubMed
Zurück zum Zitat Harris-Warrick, R. (1993). Pattern generation. Current Opinion in Neurobiology, 3, 982–988.PubMedCrossRef Harris-Warrick, R. (1993). Pattern generation. Current Opinion in Neurobiology, 3, 982–988.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. (2006). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT. Izhikevich, E. (2006). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT.
Zurück zum Zitat Lafreniere-Roula, M., & McCrea, D. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.PubMedCrossRef Lafreniere-Roula, M., & McCrea, D. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.PubMedCrossRef
Zurück zum Zitat Lundberg, A. (1981). Half-centres revisited. In J. Szentagothai, M. Palkovits, & J. Hamori (Eds.), Regulatory functions of the CNS. Motion and organization principles (pp. 155–167). Budapest: Pergamon Akadem Kiado. Lundberg, A. (1981). Half-centres revisited. In J. Szentagothai, M. Palkovits, & J. Hamori (Eds.), Regulatory functions of the CNS. Motion and organization principles (pp. 155–167). Budapest: Pergamon Akadem Kiado.
Zurück zum Zitat Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11, 986–996.CrossRef Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11, 986–996.CrossRef
Zurück zum Zitat Marder, E., Bucher, D., Schulz, D., & Taylor, A. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, 685–699.CrossRef Marder, E., Bucher, D., Schulz, D., & Taylor, A. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, 685–699.CrossRef
Zurück zum Zitat Marder, E., & Calabrese, R. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed Marder, E., & Calabrese, R. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed
Zurück zum Zitat Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.PubMedCrossRef Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.PubMedCrossRef
Zurück zum Zitat McCrea, D., & Rybak, I. (2007). Modeling the mammalian locomotor CPG: Insights from mistakes and perturbations. Progress in Brain Research, 165, 235–253.PubMedCrossRef McCrea, D., & Rybak, I. (2007). Modeling the mammalian locomotor CPG: Insights from mistakes and perturbations. Progress in Brain Research, 165, 235–253.PubMedCrossRef
Zurück zum Zitat Mischenko, E., Kolesov, Y., Kolesov, A., & Rozov, N. (1994). Asymptotic methods in singularly perturbed systems. New York: Plenum. Mischenko, E., Kolesov, Y., Kolesov, A., & Rozov, N. (1994). Asymptotic methods in singularly perturbed systems. New York: Plenum.
Zurück zum Zitat Olypher, A., Cymbalyuk, G., & Calabrese, R. (2006). Hybrid systems analysis of the control of burst duration by ed calcium current in leech heart interneurons. Journal of Neurophysiology, 96, 2857–2867.PubMedCrossRef Olypher, A., Cymbalyuk, G., & Calabrese, R. (2006). Hybrid systems analysis of the control of burst duration by ed calcium current in leech heart interneurons. Journal of Neurophysiology, 96, 2857–2867.PubMedCrossRef
Zurück zum Zitat Orlovskiĭ, G., Deliagina, T., & Grillner, S. (1999). Neuronal control of locomotion: From mollusc to man. Oxford: Oxford University Press. Orlovskiĭ, G., Deliagina, T., & Grillner, S. (1999). Neuronal control of locomotion: From mollusc to man. Oxford: Oxford University Press.
Zurück zum Zitat Rowat, P., & Selverston, A. (1993). Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. Journal of Neurophysiology, 70, 1030–1053.PubMed Rowat, P., & Selverston, A. (1993). Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. Journal of Neurophysiology, 70, 1030–1053.PubMed
Zurück zum Zitat Rubin, J. (2006). Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Physical Review E, 74, 021917.CrossRef Rubin, J. (2006). Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Physical Review E, 74, 021917.CrossRef
Zurück zum Zitat Rubin, J., & Terman, D. (2000). Analysis of clustered firing patterns in synaptically coupled networks of oscillators. Journal of Mathematical Biology, 41, 513–545.PubMedCrossRef Rubin, J., & Terman, D. (2000). Analysis of clustered firing patterns in synaptically coupled networks of oscillators. Journal of Mathematical Biology, 41, 513–545.PubMedCrossRef
Zurück zum Zitat Rubin, J., & Terman, D. (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems. Towards applications (vol. 2). Amsterdam: Elsevier. Rubin, J., & Terman, D. (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems. Towards applications (vol. 2). Amsterdam: Elsevier.
Zurück zum Zitat Rubin, J., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef Rubin, J., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef
Zurück zum Zitat Rybak, I., Shevtsova, N., Lafreniere-Roula, M., & McCrea, D. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577, 617–639.PubMedCrossRef Rybak, I., Shevtsova, N., Lafreniere-Roula, M., & McCrea, D. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577, 617–639.PubMedCrossRef
Zurück zum Zitat Selverston, A., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology 47, 29–48.PubMedCrossRef Selverston, A., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology 47, 29–48.PubMedCrossRef
Zurück zum Zitat Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.PubMedCrossRef Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.PubMedCrossRef
Zurück zum Zitat Sirota, M., & Shik, M. (1973). The cat locomotion elicited through the electrode implanted in the mid-brain. Sechenov Physiological Journal of the USSR, 59, 1314–1321.PubMed Sirota, M., & Shik, M. (1973). The cat locomotion elicited through the electrode implanted in the mid-brain. Sechenov Physiological Journal of the USSR, 59, 1314–1321.PubMed
Zurück zum Zitat Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef
Zurück zum Zitat Skinner, F., Turrigiano, G., & Marder, E. (1993). Frequency and burst duration in oscillating neurons and two-cell networks. Biological Cybernetics, 69, 375–383.PubMed Skinner, F., Turrigiano, G., & Marder, E. (1993). Frequency and burst duration in oscillating neurons and two-cell networks. Biological Cybernetics, 69, 375–383.PubMed
Zurück zum Zitat Sohal, V., & Huguenard, J. (2002). Reciprocal inhibition controls the oscillatory state in thalamic networks. Neurocomputers, 4, 653–659.CrossRef Sohal, V., & Huguenard, J. (2002). Reciprocal inhibition controls the oscillatory state in thalamic networks. Neurocomputers, 4, 653–659.CrossRef
Zurück zum Zitat Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393–407.PubMedCrossRef Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393–407.PubMedCrossRef
Zurück zum Zitat Sorensen, M., DeWeerth, S., Cymbalyuk, G., & Calabrese, R. (2004). Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. Journal of Neuroscience, 24, 5427–5438.PubMedCrossRef Sorensen, M., DeWeerth, S., Cymbalyuk, G., & Calabrese, R. (2004). Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. Journal of Neuroscience, 24, 5427–5438.PubMedCrossRef
Zurück zum Zitat Tabak, J., O’Donovan, M., & Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Computational Neuroscience, 21, 307–328.PubMedCrossRef Tabak, J., O’Donovan, M., & Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Computational Neuroscience, 21, 307–328.PubMedCrossRef
Zurück zum Zitat Taylor, A., Cottrell, G., & Kristan, Jr., W. (2002). Analysis of oscillations in a reciprocally inhibitory network with synaptic depression. Neural Computation, 14, 561–581.PubMedCrossRef Taylor, A., Cottrell, G., & Kristan, Jr., W. (2002). Analysis of oscillations in a reciprocally inhibitory network with synaptic depression. Neural Computation, 14, 561–581.PubMedCrossRef
Zurück zum Zitat Tazerart, S., Viemari, J., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98, 613.PubMedCrossRef Tazerart, S., Viemari, J., Darbon, P., Vinay, L., & Brocard, F. (2007). Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. Journal of Neurophysiology, 98, 613.PubMedCrossRef
Zurück zum Zitat Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.CrossRef Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.CrossRef
Zurück zum Zitat Yakovenko, S., McCrea, D., Stecina, K., & Prochazka, A. (2005). Control of locomotor cycle durations. Journal of Neuroscience, 94, 1057–1065. Yakovenko, S., McCrea, D., Stecina, K., & Prochazka, A. (2005). Control of locomotor cycle durations. Journal of Neuroscience, 94, 1057–1065.
Zurück zum Zitat Zhong, G., Masino, M., & Harris-Warrick, R. (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27, 4507.PubMedCrossRef Zhong, G., Masino, M., & Harris-Warrick, R. (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27, 4507.PubMedCrossRef
Metadaten
Titel
Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis
verfasst von
Silvia Daun
Jonathan E. Rubin
Ilya A. Rybak
Publikationsdatum
01.08.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0124-4

Weitere Artikel der Ausgabe 1/2009

Journal of Computational Neuroscience 1/2009 Zur Ausgabe

EditorialNotes

Editorial

Premium Partner