Skip to main content
Erschienen in: Journal of Computational Neuroscience 1-2/2010

01.08.2010

A new look at state-space models for neural data

verfasst von: Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein, Wei Wu

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1-2/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely on certain approximations which are not always accurate. Here we review direct optimization methods that avoid these approximations, but that nonetheless retain the computational efficiency of the approximate methods. We discuss a variety of examples, applying these direct optimization techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and inference of synaptic properties. Along the way, we point out connections to some related standard statistical methods, including spline smoothing and isotonic regression. Finally, we note that the computational methods reviewed here do not in fact depend on the state-space setting at all; instead, the key property we are exploiting involves the bandedness of certain matrices. We close by discussing some applications of this more general point of view, including Markov chain Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is worth noting that other more sophisticated methods such as expectation propagation (Minka 2001; Ypma and Heskes 2003; Yu et al. 2006, 2007; Koyama and Paninski 2009) may be better-equipped to handle these strongly non-Gaussian observation densities p(y t |q t ) (and are, in turn, closely related to the optimization-based methods that are the focus of this paper); however, due to space constraints, we will not discuss these methods at length here.
 
2
In practice, the simple Newton iteration does not always increase the objective logp(Q|Y); we have found the standard remedy for this instability (perform a simple backtracking linesearch along the Newton direction \(\hat Q^{(i)} - \delta^{(i)} H ^{-1} \nabla\) to determine a suitable stepsize δ (i) ≤ 1) to be quite effective here.
 
3
More precisely, Cunningham et al. (2008) introduce a clever iterative conjugate-gradient (CG) method to compute the MAP path in their model; this method requires O(T logT) time per CG step, with the number of CG steps increasing as a function of the number of observed spikes. (Note, in comparison, that the computation times of the state-space methods reviewed in the current work are insensitive to the number of observed spikes.)
 
4
The approach here can be easily generalized to the case that the input noise has a nonzero correlation timescale. For example, if the noise can be modeled as an autoregressive process of order p instead of the white noise process described here, then we simply include the unobserved p-dimensional Markov noise process in our state variable (i.e., our Markov state variable q t will now have dimension p + 2 instead of 2), and then apply the O(T) log-barrier method to this augmented state space.
 
5
In some cases, Q may be observed directly on some subset of training data. If this is the case (i.e., direct observations of q t are available together with the observed data Y), then the estimation problem simplifies drastically, since we can often fit the models p(y t |q t ,θ) and p(q t |q t − 1, θ) directly without making use of the more involved latent-variable methods discussed in this section.
 
6
It is worth mentioning the work of Cunningham et al. (2008) again here; these authors introduced conjugate gradient methods for optimizing the marginal likelihood in their model. However, their methods require computation time scaling superlinearly with the number of observed spikes (and therefore superlinearly with T, assuming that the number of observed spikes is roughly proportional to T).
 
7
An additional technical advantage of the direct optimization approach is worth noting here: to compute the E step via the Kalman filter, we need to specify some initial condition for p(V(0)). When we have no good information about the initial V(0), we can use “diffuse” initial conditions, and set the initial covariance Cov(V(0)) to be large (even infinite) in some or all directions in the n-dimensional V(0)-space. A crude way of handling this is to simply set the initial covariance in these directions to be very large (instead of infinite), though this can lead to numerical instability. A more rigorous approach is to take limits of the update equations as the uncertainty becomes large, and keep separate track of the infinite and non-infinite terms appropriately; see Durbin and Koopman (2001) for details. At any rate, these technical difficulties are avoided in the direct optimization approach, which can handle infinite prior covariance easily (this just corresponds to a zero term in the Hessian of the log-posterior).
 
Literatur
Zurück zum Zitat Ahmadian, Y., Pillow, J., & Paninski, L. (2009a). Efficient Markov Chain Monte Carlo methods for decoding population spike trains. Neural Computation (under review). Ahmadian, Y., Pillow, J., & Paninski, L. (2009a). Efficient Markov Chain Monte Carlo methods for decoding population spike trains. Neural Computation (under review).
Zurück zum Zitat Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009b). A decoder-based spike train metric for analyzing the neural code in the retina. COSYNE09. Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009b). A decoder-based spike train metric for analyzing the neural code in the retina. COSYNE09.
Zurück zum Zitat Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. PNAS, 103(47), 17961–17966.CrossRefPubMed Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. PNAS, 103(47), 17961–17966.CrossRefPubMed
Zurück zum Zitat Asif, A., & Moura, J. (2005). Block matrices with l-block banded inverse: Inversion algorithms. IEEE Transactions on Signal Processing, 53, 630–642.CrossRef Asif, A., & Moura, J. (2005). Block matrices with l-block banded inverse: Inversion algorithms. IEEE Transactions on Signal Processing, 53, 630–642.CrossRef
Zurück zum Zitat Bell, B. M. (1994). The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on Optimization, 4, 626–636.CrossRef Bell, B. M. (1994). The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on Optimization, 4, 626–636.CrossRef
Zurück zum Zitat Borg-Graham, L., Monier, C., & Fregnac, Y. (1996). Voltage-clamp measurements of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. Journal of Physiology (Paris), 90, 185–188.CrossRef Borg-Graham, L., Monier, C., & Fregnac, Y. (1996). Voltage-clamp measurements of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. Journal of Physiology (Paris), 90, 185–188.CrossRef
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Oxford: Oxford University Press. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Oxford: Oxford University Press.
Zurück zum Zitat Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–1907.CrossRefPubMed Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–1907.CrossRefPubMed
Zurück zum Zitat Brown, E., Frank, L., Tang, D., Quirk, M., & Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411–7425.PubMed Brown, E., Frank, L., Tang, D., Quirk, M., & Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411–7425.PubMed
Zurück zum Zitat Brown, E., Kass, R., & Mitra, P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7, 456–461.CrossRefPubMed Brown, E., Kass, R., & Mitra, P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7, 456–461.CrossRefPubMed
Zurück zum Zitat Brown, E., Nguyen, D., Frank, L., Wilson, M., & Solo, V. (2001). An analysis of neural receptive field plasticity by point process adaptive filtering. PNAS, 98, 12261–12266.CrossRefPubMed Brown, E., Nguyen, D., Frank, L., Wilson, M., & Solo, V. (2001). An analysis of neural receptive field plasticity by point process adaptive filtering. PNAS, 98, 12261–12266.CrossRefPubMed
Zurück zum Zitat Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.CrossRefPubMed Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.CrossRefPubMed
Zurück zum Zitat Coleman, T., & Sarma, S. (2007). A computationally efficient method for modeling neural spiking activity with point processes nonparametrically. IEEE Conference on Decision and Control. Coleman, T., & Sarma, S. (2007). A computationally efficient method for modeling neural spiking activity with point processes nonparametrically. IEEE Conference on Decision and Control.
Zurück zum Zitat Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.CrossRefPubMed Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.CrossRefPubMed
Zurück zum Zitat Cox, D. (1955). Some statistical methods connected with series of events. Journal of the Royal Statistical Society, Series B, 17, 129–164. Cox, D. (1955). Some statistical methods connected with series of events. Journal of the Royal Statistical Society, Series B, 17, 129–164.
Zurück zum Zitat Cunningham, J. P., Shenoy, K. V., & Sahani, M. (2008). Fast Gaussian process methods for point process intensity estimation. ICML, 192–199. Cunningham, J. P., Shenoy, K. V., & Sahani, M. (2008). Fast Gaussian process methods for point process intensity estimation. ICML, 192–199.
Zurück zum Zitat Czanner, G., Eden, U., Wirth, S., Yanike, M., Suzuki, W., & Brown, E. (2008). Analysis of between-trial and within-trial neural spiking dynamics. Journal of Neurophysiology, 99, 2672–2693.CrossRefPubMed Czanner, G., Eden, U., Wirth, S., Yanike, M., Suzuki, W., & Brown, E. (2008). Analysis of between-trial and within-trial neural spiking dynamics. Journal of Neurophysiology, 99, 2672–2693.CrossRefPubMed
Zurück zum Zitat Davis, R., & Rodriguez-Yam, G. (2005). Estimation for state-space models: An approximate likelihood approach. Statistica Sinica, 15, 381–406. Davis, R., & Rodriguez-Yam, G. (2005). Estimation for state-space models: An approximate likelihood approach. Statistica Sinica, 15, 381–406.
Zurück zum Zitat Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
Zurück zum Zitat DiMatteo, I., Genovese, C., & Kass, R. (2001). Bayesian curve fitting with free-knot splines. Biometrika, 88, 1055–1073.CrossRef DiMatteo, I., Genovese, C., & Kass, R. (2001). Bayesian curve fitting with free-knot splines. Biometrika, 88, 1055–1073.CrossRef
Zurück zum Zitat Djurisic, M., Popovic, M., Carnevale, N., & Zecevic, D. (2008). Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. Journal of Neuroscience, 28(15), 4057–4068.CrossRefPubMed Djurisic, M., Popovic, M., Carnevale, N., & Zecevic, D. (2008). Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. Journal of Neuroscience, 28(15), 4057–4068.CrossRefPubMed
Zurück zum Zitat Donoghue, J. (2002). Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5, 1085–1088.CrossRefPubMed Donoghue, J. (2002). Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5, 1085–1088.CrossRefPubMed
Zurück zum Zitat Doucet, A., de Freitas, N., & Gordon, N. (Eds.) (2001). Sequential Monte Carlo in practice. New York: Springer. Doucet, A., de Freitas, N., & Gordon, N. (Eds.) (2001). Sequential Monte Carlo in practice. New York: Springer.
Zurück zum Zitat Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. Oxford: Oxford University Press. Durbin, J., & Koopman, S. (2001). Time series analysis by state space methods. Oxford: Oxford University Press.
Zurück zum Zitat Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analyses of neural encoding by point process adaptive filtering. Neural Computation, 16, 971–998.CrossRefPubMed Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analyses of neural encoding by point process adaptive filtering. Neural Computation, 16, 971–998.CrossRefPubMed
Zurück zum Zitat Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419–428.CrossRefPubMed Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419–428.CrossRefPubMed
Zurück zum Zitat Escola, S., & Paninski, L. (2009). Hidden Markov models applied toward the inference of neural states and the improved estimation of linear receptive fields. Neural Computation (under review). Escola, S., & Paninski, L. (2009). Hidden Markov models applied toward the inference of neural states and the improved estimation of linear receptive fields. Neural Computation (under review).
Zurück zum Zitat Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60.CrossRef Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60.CrossRef
Zurück zum Zitat Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. New York: Springer. Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. New York: Springer.
Zurück zum Zitat Frank, L., Eden, U., Solo, V., Wilson, M., & Brown, E. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: An adaptive filtering approach. Journal of Neuroscience, 22(9), 3817–3830.PubMed Frank, L., Eden, U., Solo, V., Wilson, M., & Brown, E. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: An adaptive filtering approach. Journal of Neuroscience, 22(9), 3817–3830.PubMed
Zurück zum Zitat Gao, Y., Black, M., Bienenstock, E., Shoham, S., & Donoghue, J. (2002). Probabilistic inference of arm motion from neural activity in motor cortex. NIPS, 14, 221–228. Gao, Y., Black, M., Bienenstock, E., Shoham, S., & Donoghue, J. (2002). Probabilistic inference of arm motion from neural activity in motor cortex. NIPS, 14, 221–228.
Zurück zum Zitat Gat, I., Tishby, N., & Abeles, M. (1997). Hidden Markov modeling of simultaneously recorded cells in the associative cortex of behaving monkeys. Network: Computation in Neural Systems, 8, 297–322.CrossRef Gat, I., Tishby, N., & Abeles, M. (1997). Hidden Markov modeling of simultaneously recorded cells in the associative cortex of behaving monkeys. Network: Computation in Neural Systems, 8, 297–322.CrossRef
Zurück zum Zitat Godsill, S., Doucet, A., & West, M. (2004). Monte Carlo smoothing for non-linear time series. Journal of the American Statistical Association, 99, 156–168.CrossRef Godsill, S., Doucet, A., & West, M. (2004). Monte Carlo smoothing for non-linear time series. Journal of the American Statistical Association, 99, 156–168.CrossRef
Zurück zum Zitat Green, P., & Silverman, B. (1994). Nonparametric regression and generalized linear models. Boca Raton: CRC. Green, P., & Silverman, B. (1994). Nonparametric regression and generalized linear models. Boca Raton: CRC.
Zurück zum Zitat Hawkes, A. (2004). Stochastic modelling of single ion channels. In J. Feng (Ed.), Computational neuroscience: A comprehensive approach (pp. 131–158). Boca Raton: CRC. Hawkes, A. (2004). Stochastic modelling of single ion channels. In J. Feng (Ed.), Computational neuroscience: A comprehensive approach (pp. 131–158). Boca Raton: CRC.
Zurück zum Zitat Herbst, J. A., Gammeter, S., Ferrero, D., & Hahnloser, R. H. (2008). Spike sorting with hidden markov models. Journal of Neuroscience Methods, 174(1), 126–134.CrossRefPubMed Herbst, J. A., Gammeter, S., Ferrero, D., & Hahnloser, R. H. (2008). Spike sorting with hidden markov models. Journal of Neuroscience Methods, 174(1), 126–134.CrossRefPubMed
Zurück zum Zitat Huys, Q., Ahrens, M., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96, 872–890.CrossRefPubMed Huys, Q., Ahrens, M., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96, 872–890.CrossRefPubMed
Zurück zum Zitat Huys, Q., & Paninski, L. (2009). Model-based smoothing of, and parameter estimation from, noisy biophysical recordings. PLOS Computational Biology, 5, e1000379.CrossRef Huys, Q., & Paninski, L. (2009). Model-based smoothing of, and parameter estimation from, noisy biophysical recordings. PLOS Computational Biology, 5, e1000379.CrossRef
Zurück zum Zitat Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics (pp. 507–524). New York: Gordon and Breach. Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics (pp. 507–524). New York: Gordon and Breach.
Zurück zum Zitat Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of the National Academy of Sciences, 104, 18772–18777.CrossRef Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of the National Academy of Sciences, 104, 18772–18777.CrossRef
Zurück zum Zitat Julier, S., & Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls. Orlando, FL. Julier, S., & Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls. Orlando, FL.
Zurück zum Zitat Jungbacker, B., & Koopman, S. (2007). Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika, 94, 827–839.CrossRef Jungbacker, B., & Koopman, S. (2007). Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika, 94, 827–839.CrossRef
Zurück zum Zitat Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRef Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRef
Zurück zum Zitat Kass, R., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data. Network: Computation in Neural Systems, 14, 5–15.CrossRef Kass, R., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data. Network: Computation in Neural Systems, 14, 5–15.CrossRef
Zurück zum Zitat Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94, 8–25.CrossRefPubMed Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94, 8–25.CrossRefPubMed
Zurück zum Zitat Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. Advances in Neural Information Processing Systems, 15, 1359–1366. Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. Advances in Neural Information Processing Systems, 15, 1359–1366.
Zurück zum Zitat Kemere, C., Santhanam, G., Yu, B. M., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2008). Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. Journal of Neurophysiology, 100, 2441–2452.CrossRefPubMed Kemere, C., Santhanam, G., Yu, B. M., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2008). Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. Journal of Neurophysiology, 100, 2441–2452.CrossRefPubMed
Zurück zum Zitat Khuc-Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11, 1343–1351.CrossRef Khuc-Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11, 1343–1351.CrossRef
Zurück zum Zitat Kitagawa, G., & Gersch, W. (1996). Smoothness priors analysis of time series. Lecture notes in statistics (Vol. 116). New York: Springer. Kitagawa, G., & Gersch, W. (1996). Smoothness priors analysis of time series. Lecture notes in statistics (Vol. 116). New York: Springer.
Zurück zum Zitat Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press. Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.
Zurück zum Zitat Koyama, S., & Paninski, L. (2009). Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience doi:10.1007/s10827-009-0150-x. Koyama, S., & Paninski, L. (2009). Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience doi:10.​1007/​s10827-009-0150-x.
Zurück zum Zitat Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef
Zurück zum Zitat Kulkarni, J., & Paninski, L. (2008).Efficient analytic computational methods for state-space decoding of goal-directed movements. IEEE Signal Processing Magazine, 25(special issue on brain-computer interfaces), 78–86. Kulkarni, J., & Paninski, L. (2008).Efficient analytic computational methods for state-space decoding of goal-directed movements. IEEE Signal Processing Magazine, 25(special issue on brain-computer interfaces), 78–86.
Zurück zum Zitat Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Computation, 21, 619–687.CrossRefPubMed Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Computation, 21, 619–687.CrossRefPubMed
Zurück zum Zitat Litke, A., Bezayiff, N., Chichilnisky, E., Cunningham, W., Dabrowski, W., Grillo, A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 1434–1440. Litke, A., Bezayiff, N., Chichilnisky, E., Cunningham, W., Dabrowski, W., Grillo, A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 1434–1440.
Zurück zum Zitat Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653.CrossRefPubMed Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653.CrossRefPubMed
Zurück zum Zitat Meng, X.-L., & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86(416), 899–909.CrossRef Meng, X.-L., & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86(416), 899–909.CrossRef
Zurück zum Zitat Minka, T. (2001). A family of algorithms for Approximate Bayesian Inference. PhD thesis, MIT. Minka, T. (2001). A family of algorithms for Approximate Bayesian Inference. PhD thesis, MIT.
Zurück zum Zitat Moeller, J., Syversveen, A., & Waagepetersen, R. (1998). Log-Gaussian Cox processes. Scandinavian Journal of Statistics, 25, 451–482.CrossRef Moeller, J., Syversveen, A., & Waagepetersen, R. (1998). Log-Gaussian Cox processes. Scandinavian Journal of Statistics, 25, 451–482.CrossRef
Zurück zum Zitat Moeller, J., & Waagepetersen, R. (2004). Statistical inference and simulation for spatial point processes. London: Chapman Hall. Moeller, J., & Waagepetersen, R. (2004). Statistical inference and simulation for spatial point processes. London: Chapman Hall.
Zurück zum Zitat Murphy, G., & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron, 52, 511–524.CrossRefPubMed Murphy, G., & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron, 52, 511–524.CrossRefPubMed
Zurück zum Zitat Neal, R., & Hinton, G. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. Jordan (Ed.), Learning in graphical models (pp. 355–368). Cambridge: MIT. Neal, R., & Hinton, G. (1999). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. Jordan (Ed.), Learning in graphical models (pp. 355–368). Cambridge: MIT.
Zurück zum Zitat Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11041–11046.CrossRefPubMed Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11041–11046.CrossRefPubMed
Zurück zum Zitat Nikolenko, V., Watson, B., Araya, R., Woodruff, A., Peterka, D., & Yuste, R. (2008). SLM microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators. Frontiers in Neural Circuits, 2, 5.CrossRefPubMed Nikolenko, V., Watson, B., Araya, R., Woodruff, A., Peterka, D., & Yuste, R. (2008). SLM microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators. Frontiers in Neural Circuits, 2, 5.CrossRefPubMed
Zurück zum Zitat Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRef
Zurück zum Zitat Nykamp, D. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.CrossRefPubMed Nykamp, D. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.CrossRefPubMed
Zurück zum Zitat Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed
Zurück zum Zitat Olsson, R. K., Petersen, K. B., & Lehn-Schioler, T. (2007). State-space models: From the EM algorithm to a gradient approach. Neural Computation, 19, 1097–1111.CrossRef Olsson, R. K., Petersen, K. B., & Lehn-Schioler, T. (2007). State-space models: From the EM algorithm to a gradient approach. Neural Computation, 19, 1097–1111.CrossRef
Zurück zum Zitat Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef
Zurück zum Zitat Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems, 17. Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems, 17.
Zurück zum Zitat Paninski, L. (2009). Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods. Journal of Computational Neuroscience (under review). Paninski, L. (2009). Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods. Journal of Computational Neuroscience (under review).
Zurück zum Zitat Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. Journal of Neuroscience, 24, 8551–8561.CrossRefPubMed Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. Journal of Neuroscience, 24, 8551–8561.CrossRefPubMed
Zurück zum Zitat Paninski, L., & Ferreira, D. (2008). State-space methods for inferring synaptic inputs and weights. COSYNE. Paninski, L., & Ferreira, D. (2008). State-space methods for inferring synaptic inputs and weights. COSYNE.
Zurück zum Zitat Peña, J.-L. & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11787–11792.CrossRefPubMed Peña, J.-L. & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11787–11792.CrossRefPubMed
Zurück zum Zitat Penny, W., Ghahramani, Z., & Friston, K. (2005). Bilinear dynamical systems. Philosophical Transactions of the Royal Society of London, 360, 983–993.CrossRefPubMed Penny, W., Ghahramani, Z., & Friston, K. (2005). Bilinear dynamical systems. Philosophical Transactions of the Royal Society of London, 360, 983–993.CrossRefPubMed
Zurück zum Zitat Pillow, J., Ahmadian, Y., & Paninski, L. (2009). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation (under review). Pillow, J., Ahmadian, Y., & Paninski, L. (2009). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation (under review).
Zurück zum Zitat Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMed Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMed
Zurück zum Zitat Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge: Cambridge University Press. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge: Cambridge University Press.
Zurück zum Zitat Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45, 133–145.CrossRefPubMed Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45, 133–145.CrossRefPubMed
Zurück zum Zitat Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.CrossRef Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.CrossRef
Zurück zum Zitat Rahnama, K., Rad & Paninski, L. (2009). Efficient estimation of two-dimensional firing rate surfaces via Gaussian process methods. Network (under review). Rahnama, K., Rad & Paninski, L. (2009). Efficient estimation of two-dimensional firing rate surfaces via Gaussian process methods. Network (under review).
Zurück zum Zitat Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT. Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT.
Zurück zum Zitat Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge: MIT. Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the neural code. Cambridge: MIT.
Zurück zum Zitat Robert, C., & Casella, G. (2005). Monte Carlo statistical methods. New York: Springer. Robert, C., & Casella, G. (2005). Monte Carlo statistical methods. New York: Springer.
Zurück zum Zitat Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation, 11, 305–345.CrossRefPubMed Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation, 11, 305–345.CrossRefPubMed
Zurück zum Zitat Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171. Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171.
Zurück zum Zitat Rybicki, G. B., & Press, W. H. (1995). Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. Physical Review Letters, 74(7), 1060–1063.CrossRefPubMed Rybicki, G. B., & Press, W. H. (1995). Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. Physical Review Letters, 74(7), 1060–1063.CrossRefPubMed
Zurück zum Zitat Salakhutdinov, R., Roweis, S. T., & Ghahramani, Z. (2003). Optimization with EM and expectation-conjugate-gradient. International Conference on Machine Learning, 20, 672–679. Salakhutdinov, R., Roweis, S. T., & Ghahramani, Z. (2003). Optimization with EM and expectation-conjugate-gradient. International Conference on Machine Learning, 20, 672–679.
Zurück zum Zitat Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.CrossRefPubMed Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.CrossRefPubMed
Zurück zum Zitat Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.CrossRefPubMed Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.CrossRefPubMed
Zurück zum Zitat Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.CrossRefPubMed Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 8254–8266.CrossRefPubMed
Zurück zum Zitat Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29, 5022–5031.CrossRefPubMed Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29, 5022–5031.CrossRefPubMed
Zurück zum Zitat Shoham, S., Paninski, L., Fellows, M., Hatsopoulos, N., Donoghue, J., & Normann, R. (2005). Optimal decoding for a primary motor cortical brain-computer interface. IEEE Transactions on Biomedical Engineering, 52, 1312–1322.CrossRefPubMed Shoham, S., Paninski, L., Fellows, M., Hatsopoulos, N., Donoghue, J., & Normann, R. (2005). Optimal decoding for a primary motor cortical brain-computer interface. IEEE Transactions on Biomedical Engineering, 52, 1312–1322.CrossRefPubMed
Zurück zum Zitat Shumway, R., & Stoffer, D. (2006). Time series analysis and its applications. New York: Springer. Shumway, R., & Stoffer, D. (2006). Time series analysis and its applications. New York: Springer.
Zurück zum Zitat Silvapulle, M., & Sen, P. (2004). Constrained statistical inference: Inequality, order, and shape restrictions. New York: Wiley-Interscience. Silvapulle, M., & Sen, P. (2004). Constrained statistical inference: Inequality, order, and shape restrictions. New York: Wiley-Interscience.
Zurück zum Zitat Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991.CrossRefPubMed Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991.CrossRefPubMed
Zurück zum Zitat Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., et al. (2004). Dynamic analysis of learning in behavioral experiments. Journal of Neuroscience, 24(2), 447–461.CrossRefPubMed Smith, A. C., Frank, L. M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., et al. (2004). Dynamic analysis of learning in behavioral experiments. Journal of Neuroscience, 24(2), 447–461.CrossRefPubMed
Zurück zum Zitat Smith, A. C., Stefani, M. R., Moghaddam, B., & Brown, E. N. (2005). Analysis and design of behavioral experiments to characterize population learning. Journal of Neurophysiology, 93(3), 1776–1792.CrossRefPubMed Smith, A. C., Stefani, M. R., Moghaddam, B., & Brown, E. N. (2005). Analysis and design of behavioral experiments to characterize population learning. Journal of Neurophysiology, 93(3), 1776–1792.CrossRefPubMed
Zurück zum Zitat Snyder, D., & Miller, M. (1991). Random point processes in time and space. New York: Springer. Snyder, D., & Miller, M. (1991). Random point processes in time and space. New York: Springer.
Zurück zum Zitat Srinivasan, L., Eden, U., Willsky, A., & Brown, E. (2006). A state-space analysis for reconstruction of goal-directed movements using neural signals. Neural Computation, 18, 2465–2494.CrossRefPubMed Srinivasan, L., Eden, U., Willsky, A., & Brown, E. (2006). A state-space analysis for reconstruction of goal-directed movements using neural signals. Neural Computation, 18, 2465–2494.CrossRefPubMed
Zurück zum Zitat Suzuki, W. A., & Brown, E. N. (2005). Behavioral and neurophysiological analyses of dynamic learning processes. Behavioral & Cognitive Neuroscience Reviews, 4(2), 67–95.CrossRef Suzuki, W. A., & Brown, E. N. (2005). Behavioral and neurophysiological analyses of dynamic learning processes. Behavioral & Cognitive Neuroscience Reviews, 4(2), 67–95.CrossRef
Zurück zum Zitat Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.CrossRefPubMed Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.CrossRefPubMed
Zurück zum Zitat Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470.CrossRef Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470.CrossRef
Zurück zum Zitat Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. COSYNE. Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. COSYNE.
Zurück zum Zitat Vogelstein, J., Babadi, B., Watson, B., Yuste, R., & Paninski, L. (2008). Fast nonnegative deconvolution via tridiagonal interior-point methods, applied to calcium fluorescence data. Statistical analysis of neural data (SAND) conference. Vogelstein, J., Babadi, B., Watson, B., Yuste, R., & Paninski, L. (2008). Fast nonnegative deconvolution via tridiagonal interior-point methods, applied to calcium fluorescence data. Statistical analysis of neural data (SAND) conference.
Zurück zum Zitat Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM. Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM.
Zurück zum Zitat Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F., & Hirsch, J. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron, 55, 465–478.CrossRefPubMed Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F., & Hirsch, J. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron, 55, 465–478.CrossRefPubMed
Zurück zum Zitat Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.PubMed Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.PubMed
Zurück zum Zitat Wehr, M., & Zador, A., (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426, 442–446.CrossRefPubMed Wehr, M., & Zador, A., (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426, 442–446.CrossRefPubMed
Zurück zum Zitat West, M., & Harrison, P., (1997). Bayesian forecasting and dynamic models. New York: Springer. West, M., & Harrison, P., (1997). Bayesian forecasting and dynamic models. New York: Springer.
Zurück zum Zitat Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., & Black, M. J. (2006). Bayesian population coding of motor cortical activity using a Kalman filter. Neural Computation, 18, 80–118.CrossRefPubMed Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., & Black, M. J. (2006). Bayesian population coding of motor cortical activity using a Kalman filter. Neural Computation, 18, 80–118.CrossRefPubMed
Zurück zum Zitat Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2009). Neural decoding of goal-directed movements using a linear statespace model with hidden states. IEEE Transactions on Biomedical Engineering (in press). Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2009). Neural decoding of goal-directed movements using a linear statespace model with hidden states. IEEE Transactions on Biomedical Engineering (in press).
Zurück zum Zitat Xie, R., Gittelman, J. X., & Pollak, G. D. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. Journal of Neuroscience, 27(35), 9469–9481.CrossRefPubMed Xie, R., Gittelman, J. X., & Pollak, G. D. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. Journal of Neuroscience, 27(35), 9469–9481.CrossRefPubMed
Zurück zum Zitat Ypma, A., & Heskes, T., (2003). Iterated extended Kalman smoothing with expectation-propagation. Neural Networks for Signal Processing, 2003, 219–228. Ypma, A., & Heskes, T., (2003). Iterated extended Kalman smoothing with expectation-propagation. Neural Networks for Signal Processing, 2003, 219–228.
Zurück zum Zitat Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. NIPS. Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. NIPS.
Zurück zum Zitat Yu, B. M., Cunningham, J. P., Shenoy, K. V., & Sahani, M. (2007). Neural decoding of movements: From linear to nonlinear trajectory models. ICONIP, 586–595. Yu, B. M., Cunningham, J. P., Shenoy, K. V., & Sahani, M. (2007). Neural decoding of movements: From linear to nonlinear trajectory models. ICONIP, 586–595.
Zurück zum Zitat Yu, B. M., Kemere, C., Santhanam, G., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2007). Mixture of trajectory models for neural decoding of goal-directed movements. Journal of Neurophysiology, 97(5), 3763–3780.CrossRefPubMed Yu, B. M., Kemere, C., Santhanam, G., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2007). Mixture of trajectory models for neural decoding of goal-directed movements. Journal of Neurophysiology, 97(5), 3763–3780.CrossRefPubMed
Zurück zum Zitat Yu, B. M., Shenoy, K. V., & Sahani, M. (2006). Expectation propagation for inference in non-linear dynamical models with Poisson observations. In Proceedings of the nonlinear statistical signal processing workshop (pp. 83–86). Piscataway: IEEE.CrossRef Yu, B. M., Shenoy, K. V., & Sahani, M. (2006). Expectation propagation for inference in non-linear dynamical models with Poisson observations. In Proceedings of the nonlinear statistical signal processing workshop (pp. 83–86). Piscataway: IEEE.CrossRef
Zurück zum Zitat Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMed Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMed
Metadaten
Titel
A new look at state-space models for neural data
verfasst von
Liam Paninski
Yashar Ahmadian
Daniel Gil Ferreira
Shinsuke Koyama
Kamiar Rahnama Rad
Michael Vidne
Joshua Vogelstein
Wei Wu
Publikationsdatum
01.08.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1-2/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0179-x

Weitere Artikel der Ausgabe 1-2/2010

Journal of Computational Neuroscience 1-2/2010 Zur Ausgabe

Premium Partner