Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2011

01.08.2011

An inter-segmental network model and its use in elucidating gait-switches in the stick insect

verfasst von: Silvia Daun–Gruhn, Tibor Istvan Tóth

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Animal locomotion requires highly coordinated working of the segmental neuronal networks that control the limb movements. Experiments have shown that sensory signals originating from the extremities play a pivotal role in controlling locomotion patterns by acting on central networks. Based on the results from stick insect locomotion, we constructed an inter-segmental model comprising local networks for all three legs, i.e. for the pro-, meso- and meta-thorax, their inter-connections and the main sensory inputs modifying their activities. In the model, the local networks are uniform, and each of them consists of a central pattern generator (CPG) providing the rhythmic oscillation for the protractor-retractor motor systems, the corresponding motoneurons (MNs), and local inhibitory interneurons (IINs) between the CPGs and the MNs. Between segments, the CPGs are connected cyclically by both excitatory and inhibitory pathways that are modulated by the aforementioned sensory inputs. Simulations done with our network model showed that it was capable of reproducing basic patterns of locomotion such as those occurring during tri- and tetrapod gaits. The model further revealed a number of elementary neuronal processes (e.g. synaptic inhibition, or changing the synaptic drive at specific neurons) that in the simulations were necessary, and in their entirety sufficient, to bring about a transition from one type of gait to another. The main result of this simulation study is that exactly the same mechanism underlies the transition between the two types of gait irrespective of the direction of the change. Moreover, the model suggests that the majority of these processes can be attributed to direct sensory influences, and changes are required only in centrally controlled synaptic drives to the CPGs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.PubMedCrossRef Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.PubMedCrossRef
Zurück zum Zitat Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: Influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.PubMedCrossRef Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: Influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.PubMedCrossRef
Zurück zum Zitat Büschges, A. (1995). Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. Journal of Neurobiology, 27, 488–512.PubMedCrossRef Büschges, A. (1995). Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. Journal of Neurobiology, 27, 488–512.PubMedCrossRef
Zurück zum Zitat Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.PubMedCrossRef Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.PubMedCrossRef
Zurück zum Zitat Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmented organs for locomotion. Journal of Neurophysiology, 93, 1127–1153.PubMedCrossRef Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmented organs for locomotion. Journal of Neurophysiology, 93, 1127–1153.PubMedCrossRef
Zurück zum Zitat Büschges, A., Akay, T., Gabriel, J. P., Schmidt, J. (2008). Organizing network action for locomotion: Insights from studying insect walking. Brain Research Reviews, 57, 162–171.PubMedCrossRef Büschges, A., Akay, T., Gabriel, J. P., Schmidt, J. (2008). Organizing network action for locomotion: Insights from studying insect walking. Brain Research Reviews, 57, 162–171.PubMedCrossRef
Zurück zum Zitat Büschges, A., & Gruhn, M. (2008). Mechanosensory feedback in walking: From joint control to locomotor patterns. Advances in Insect Physiology, 34, 193–230.CrossRef Büschges, A., & Gruhn, M. (2008). Mechanosensory feedback in walking: From joint control to locomotor patterns. Advances in Insect Physiology, 34, 193–230.CrossRef
Zurück zum Zitat Büschges, A., Ludwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.PubMedCrossRef Büschges, A., Ludwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.PubMedCrossRef
Zurück zum Zitat Büschges, A., & Wolf, H. (1999). Phase-dependent presynaptic modulation of mechanosensory signals in the locust flight system. Journal of Neurophysiology, 81, 959–962.PubMed Büschges, A., & Wolf, H. (1999). Phase-dependent presynaptic modulation of mechanosensory signals in the locust flight system. Journal of Neurophysiology, 81, 959–962.PubMed
Zurück zum Zitat Calabrese, R. L. (1995). Half-center oscillators underlying rhythmic movements. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 444–447). Cambridge: MIT Press. Calabrese, R. L. (1995). Half-center oscillators underlying rhythmic movements. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 444–447). Cambridge: MIT Press.
Zurück zum Zitat Cohen, A. H., Holmes, P. J., & Rand, R. (1982). The nature of coupling between segmented oscillations and the lamprey spinal generator for locomotion: A mathematical model. Journal of Mathematical Biology, 13, 345–369.PubMedCrossRef Cohen, A. H., Holmes, P. J., & Rand, R. (1982). The nature of coupling between segmented oscillations and the lamprey spinal generator for locomotion: A mathematical model. Journal of Mathematical Biology, 13, 345–369.PubMedCrossRef
Zurück zum Zitat Collins, J., & Richmond, S. (1994). Hard–wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71, 375–385.CrossRef Collins, J., & Richmond, S. (1994). Hard–wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71, 375–385.CrossRef
Zurück zum Zitat Collins, J., & Stewart, I. (1992). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68, 287–298.CrossRef Collins, J., & Stewart, I. (1992). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68, 287–298.CrossRef
Zurück zum Zitat Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neuroscience, 13, 15–21.CrossRef Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neuroscience, 13, 15–21.CrossRef
Zurück zum Zitat Cruse, H., Bartling, C., Dean, J., Kindermann, T., Schmitz, J., & Schumm, M. (2000). A simple neural network for the control of a six-legged walking system. In P. Crago, & J. Winters (Eds.), Biomechanics and neural control of posture and movement (pp. 231–239). New York: Springer. Cruse, H., Bartling, C., Dean, J., Kindermann, T., Schmitz, J., & Schumm, M. (2000). A simple neural network for the control of a six-legged walking system. In P. Crago, & J. Winters (Eds.), Biomechanics and neural control of posture and movement (pp. 231–239). New York: Springer.
Zurück zum Zitat Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a half-center oscillator to external drive depends on the intrinsic dynamics of its components: A mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.PubMedCrossRef Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a half-center oscillator to external drive depends on the intrinsic dynamics of its components: A mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.PubMedCrossRef
Zurück zum Zitat Daun–Gruhn, S. (2010). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0254-3. Daun–Gruhn, S. (2010). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience. doi:10.​1007/​s10827-010-0254-3.
Zurück zum Zitat Delcomyn, F. (1971). The locomotion of the cockroach Periplaneta Americana. Journal of Experimental Biology, 54, 443–452. Delcomyn, F. (1971). The locomotion of the cockroach Periplaneta Americana. Journal of Experimental Biology, 54, 443–452.
Zurück zum Zitat Delcomyn, F. (1989). Walking of the American cockroach: The timing of motor activity in the legs during straight walking. Biological Cybernetics, 60, 373–384.PubMedCrossRef Delcomyn, F. (1989). Walking of the American cockroach: The timing of motor activity in the legs during straight walking. Biological Cybernetics, 60, 373–384.PubMedCrossRef
Zurück zum Zitat Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior–based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure & Development, 33, 1–13.CrossRef Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior–based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure & Development, 33, 1–13.CrossRef
Zurück zum Zitat Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33, 287–300.PubMedCrossRef Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33, 287–300.PubMedCrossRef
Zurück zum Zitat El Manira, A., DiCaprio, R. A., Cattaert, D., & Clarac, F. (1991). Monosynaptic interjoint reflexes and their central modulation during fictive locomotion in crayfish. European Journal of Neuroscience, 3, 1219–1231.PubMedCrossRef El Manira, A., DiCaprio, R. A., Cattaert, D., & Clarac, F. (1991). Monosynaptic interjoint reflexes and their central modulation during fictive locomotion in crayfish. European Journal of Neuroscience, 3, 1219–1231.PubMedCrossRef
Zurück zum Zitat Fisch, K. (2007). Untersuchungen zur Rolle und Funktion tarsaler sensorischer Signale bei der Laufmustergenerierung im Mittelbein der Stabheuschrecke Carausius morosus. (Investigations on the role and function of sensory signals of the tarsus at the generation of running patterns in the middle leg of the stick insect Carausius morosus.) Master Thesis, University of Cologne, Germany. Fisch, K. (2007). Untersuchungen zur Rolle und Funktion tarsaler sensorischer Signale bei der Laufmustergenerierung im Mittelbein der Stabheuschrecke Carausius morosus. (Investigations on the role and function of sensory signals of the tarsus at the generation of running patterns in the middle leg of the stick insect Carausius morosus.) Master Thesis, University of Cologne, Germany.
Zurück zum Zitat Gossard, J. P., Cabelguen, J. M., & Rossignol, S. (1990). Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Research, 537, 14–23.PubMedCrossRef Gossard, J. P., Cabelguen, J. M., & Rossignol, S. (1990). Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Research, 537, 14–23.PubMedCrossRef
Zurück zum Zitat Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). Journal of Comparative Physiology, 81, 23–52.CrossRef Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). Journal of Comparative Physiology, 81, 23–52.CrossRef
Zurück zum Zitat Graham, D. (1977). Simulation of a model for the coordination of leg movement in free walking insects. Biological Cybernetics, 26, 187–198.CrossRef Graham, D. (1977). Simulation of a model for the coordination of leg movement in free walking insects. Biological Cybernetics, 26, 187–198.CrossRef
Zurück zum Zitat Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.CrossRef Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.CrossRef
Zurück zum Zitat Graham, D., & Cruse, H. (1980). Coordinated walking of stick insects on a mercury surface. Journal of Experimental Biology, 92, 229–241. Graham, D., & Cruse, H. (1980). Coordinated walking of stick insects on a mercury surface. Journal of Experimental Biology, 92, 229–241.
Zurück zum Zitat Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics, 68, 1–13.PubMedCrossRef Hellgren, J., Grillner, S., & Lansner, A. (1992). Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biological Cybernetics, 68, 1–13.PubMedCrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.PubMed
Zurück zum Zitat Holmes, P. J., Full, R. J., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analysis, and challenges. SIAM Review, 48, 207–304.CrossRef Holmes, P. J., Full, R. J., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analysis, and challenges. SIAM Review, 48, 207–304.CrossRef
Zurück zum Zitat Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.PubMedCrossRef Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.PubMedCrossRef
Zurück zum Zitat Kittmann, R., Schmitz, J., & Büschges, A. (1996). Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology, 31, 512–531.PubMedCrossRef Kittmann, R., Schmitz, J., & Büschges, A. (1996). Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology, 31, 512–531.PubMedCrossRef
Zurück zum Zitat Kopell, N., Ermentrout, G. B., & Williams, T. L. (1991). On chains of oscillators forced at one end. SIAM, Journal of Applied Mathematics, 51, 1397–1417.CrossRef Kopell, N., Ermentrout, G. B., & Williams, T. L. (1991). On chains of oscillators forced at one end. SIAM, Journal of Applied Mathematics, 51, 1397–1417.CrossRef
Zurück zum Zitat Laurent, G., & Burrows, M. (1989a). Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 9, 3019–3029.PubMed Laurent, G., & Burrows, M. (1989a). Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 9, 3019–3029.PubMed
Zurück zum Zitat Laurent, G., & Burrows, M. (1989b). Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Journal of Neuroscience, 9, 3030–3039.PubMed Laurent, G., & Burrows, M. (1989b). Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Journal of Neuroscience, 9, 3030–3039.PubMed
Zurück zum Zitat Ludwar, B. C., Westmark, S., Büschges, A., & Schmidt, J. (2005). Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front leg walking. Journal of Neurophysiology, 93, 1255–1265.PubMedCrossRef Ludwar, B. C., Westmark, S., Büschges, A., & Schmidt, J. (2005). Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front leg walking. Journal of Neurophysiology, 93, 1255–1265.PubMedCrossRef
Zurück zum Zitat Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.PubMedCrossRef Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.PubMedCrossRef
Zurück zum Zitat Satterlie, R. A. (1985). Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science, 229, 402–404.PubMedCrossRef Satterlie, R. A. (1985). Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science, 229, 402–404.PubMedCrossRef
Zurück zum Zitat Schilling, M., Cruse, H., & Arena, P. (2007). Hexapod walking: An expansion to walknet dealing with leg amputations and force oscillations. Biological Cybernetics, 96, 323–340.PubMedCrossRef Schilling, M., Cruse, H., & Arena, P. (2007). Hexapod walking: An expansion to walknet dealing with leg amputations and force oscillations. Biological Cybernetics, 96, 323–340.PubMedCrossRef
Zurück zum Zitat Schmidt, J., Fischer, H., & Büschges, A. (2001). Pattern generation for walking and searching movements of a stick insect leg. II. Control of motoneuronal activity. Journal of Neurophysiology, 85, 354–361.PubMed Schmidt, J., Fischer, H., & Büschges, A. (2001). Pattern generation for walking and searching movements of a stick insect leg. II. Control of motoneuronal activity. Journal of Neurophysiology, 85, 354–361.PubMed
Zurück zum Zitat Schöner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal gaits and gait transitions. Journal of Theoretical Biology, 142, 359–391.PubMedCrossRef Schöner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal gaits and gait transitions. Journal of Theoretical Biology, 142, 359–391.PubMedCrossRef
Zurück zum Zitat Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology, 47, 29–48.PubMedCrossRef Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology, 47, 29–48.PubMedCrossRef
Zurück zum Zitat Traub, R. D., Wong, R. K. S., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.PubMed Traub, R. D., Wong, R. K. S., Miles, R., & Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.PubMed
Zurück zum Zitat Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental coordination in the lamprey: Simulations using a network model without segmental boundaries. Biological Cybernetics, 76, 1–9.CrossRef Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental coordination in the lamprey: Simulations using a network model without segmental boundaries. Biological Cybernetics, 76, 1–9.CrossRef
Zurück zum Zitat Wendler, G. (1968). Ein Analogmodell der Beinbewegung eines laufenden Insekts. (An analogue model of the leg motion of a running insect.) Kybernetik, 18, 67–74. Wendler, G. (1968). Ein Analogmodell der Beinbewegung eines laufenden Insekts. (An analogue model of the leg motion of a running insect.) Kybernetik, 18, 67–74.
Zurück zum Zitat Wendler, G. (1978). Lokomotion: Das Ergebnis zentral-peripherer Interaktion. (Locomotion: The result of central-peripheral interaction.) Verhandlungen der Deutschen Zoologischen Gesellschaft, 71, 80–96. Wendler, G. (1978). Lokomotion: Das Ergebnis zentral-peripherer Interaktion. (Locomotion: The result of central-peripheral interaction.) Verhandlungen der Deutschen Zoologischen Gesellschaft, 71, 80–96.
Zurück zum Zitat Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.PubMedCrossRef Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.PubMedCrossRef
Zurück zum Zitat Wolf, H., & Burrows, M. (1995). Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. Journal of Neuroscience, 15, 5623–5636.PubMed Wolf, H., & Burrows, M. (1995). Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. Journal of Neuroscience, 15, 5623–5636.PubMed
Metadaten
Titel
An inter-segmental network model and its use in elucidating gait-switches in the stick insect
verfasst von
Silvia Daun–Gruhn
Tibor Istvan Tóth
Publikationsdatum
01.08.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0300-1

Weitere Artikel der Ausgabe 1/2011

Journal of Computational Neuroscience 1/2011 Zur Ausgabe

Premium Partner