Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2012

01.04.2012

Reduction of stochastic conductance-based neuron models with time-scales separation

verfasst von: Gilles Wainrib, Michèle Thieullen, Khashayar Pakdaman

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce a method for systematically reducing the dimension of biophysically realistic neuron models with stochastic ion channels exploiting time-scales separation. Based on a combination of singular perturbation methods for kinetic Markov schemes with some recent mathematical developments of the averaging method, the techniques are general and applicable to a large class of models. As an example, we derive and analyze reductions of different stochastic versions of the Hodgkin Huxley (HH) model, leading to distinct reduced models. The bifurcation analysis of one of the reduced models with the number of channels as a parameter provides new insights into some features of noisy discharge patterns, such as the bimodality of interspike intervals distribution. Our analysis of the stochastic HH model shows that, besides being a method to reduce the number of variables of neuronal models, our reduction scheme is a powerful method for gaining understanding on the impact of fluctuations due to finite size effects on the dynamics of slow fast systems. Our analysis of the reduced model reveals that decreasing the number of sodium channels in the HH model leads to a transition in the dynamics reminiscent of the Hopf bifurcation and that this transition accounts for changes in characteristics of the spike train generated by the model. Finally, we also examine the impact of these results on neuronal coding, notably, reliability of discharge times and spike latency, showing that reducing the number of channels can enhance discharge time reliability in response to weak inputs and that this phenomenon can be accounted for through the analysis of the reduced model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arnold, V. I. (1983). Geometric methods for ordinary differential equations. New York: Springer.CrossRef Arnold, V. I. (1983). Geometric methods for ordinary differential equations. New York: Springer.CrossRef
Zurück zum Zitat Cecchi, G. A., Sigman, M., Alonso, J. M., Martinez, L., Chialvo, D. R., & Magnasco, M. O. (2000). Noise in neurons is message dependent. Proceedings of the National Academy of Sciences, 97(10), 5557–5561.CrossRef Cecchi, G. A., Sigman, M., Alonso, J. M., Martinez, L., Chialvo, D. R., & Magnasco, M. O. (2000). Noise in neurons is message dependent. Proceedings of the National Academy of Sciences, 97(10), 5557–5561.CrossRef
Zurück zum Zitat Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.PubMedCrossRef Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.PubMedCrossRef
Zurück zum Zitat Faggionato, A., Gabrielli, D., & Crivellari M. R. (2010). Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Processes and Related Fields, 16(3), 497–548. Faggionato, A., Gabrielli, D., & Crivellari M. R. (2010). Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Processes and Related Fields, 16(3), 497–548.
Zurück zum Zitat Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340–2361.CrossRef Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340–2361.CrossRef
Zurück zum Zitat Hille, B. (2001). Ion channels of excitable membranes. Massachusettes: Sinauer Sunderland. Hille, B. (2001). Ion channels of excitable membranes. Massachusettes: Sinauer Sunderland.
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMed
Zurück zum Zitat Holden, A. V., Muhamad, M. A., & Schierwagen, A. K. (1985). Repolarizing currents and periodic activity in nerve membrane. Journal of Theoretical Neurobiology, 4, 61–71. Holden, A. V., Muhamad, M. A., & Schierwagen, A. K. (1985). Repolarizing currents and periodic activity in nerve membrane. Journal of Theoretical Neurobiology, 4, 61–71.
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT Press. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT Press.
Zurück zum Zitat Jung, P., & Shuai, J. W. (2001). Optimal sizes of ion channel clusters. Europhysics Letters, 56, 29–35.CrossRef Jung, P., & Shuai, J. W. (2001). Optimal sizes of ion channel clusters. Europhysics Letters, 56, 29–35.CrossRef
Zurück zum Zitat Keener, J. (2009). Invariant manifold reductions for Markovian ion channel dynamics. Journal of Mathematical Biology, 58(3), 447–57.PubMedCrossRef Keener, J. (2009). Invariant manifold reductions for Markovian ion channel dynamics. Journal of Mathematical Biology, 58(3), 447–57.PubMedCrossRef
Zurück zum Zitat Kepler, T. B., Abbott, L. F., & Marder, E. (1992). Reduction of conductance-based neuron models. Biological Cybernetics, 66, 381–387.PubMedCrossRef Kepler, T. B., Abbott, L. F., & Marder, E. (1992). Reduction of conductance-based neuron models. Biological Cybernetics, 66, 381–387.PubMedCrossRef
Zurück zum Zitat Mastny, E. A., Haseltine, E. L., & Rawlings, J. B. (2007). Two classes of quasi-steady-state model reductions for stochastic kinetics. The Journal of Chemical Physics, 127, 094106.PubMedCrossRef Mastny, E. A., Haseltine, E. L., & Rawlings, J. B. (2007). Two classes of quasi-steady-state model reductions for stochastic kinetics. The Journal of Chemical Physics, 127, 094106.PubMedCrossRef
Zurück zum Zitat Pakdaman, K., Tanabe, S., & Shimokawa, T. (2001). Coherence resonance and discharge time reliability in neurons and neuronal models. Neural Networks, 14(6–7), 895–90.CrossRef Pakdaman, K., Tanabe, S., & Shimokawa, T. (2001). Coherence resonance and discharge time reliability in neurons and neuronal models. Neural Networks, 14(6–7), 895–90.CrossRef
Zurück zum Zitat Pakdaman, K., Thieullen, M., & Wainrib, G. (2010). Fluid limit theorems for stochastic hybrid systems with application to neuron models. Advances in Applied Probability, 42(3), 761–794.CrossRef Pakdaman, K., Thieullen, M., & Wainrib, G. (2010). Fluid limit theorems for stochastic hybrid systems with application to neuron models. Advances in Applied Probability, 42(3), 761–794.CrossRef
Zurück zum Zitat Rinzel, J. (1985). Excitation dynamics: Insights from simplified membrane models. Feredation Proceedings, 44, 2944–2946. Rinzel, J. (1985). Excitation dynamics: Insights from simplified membrane models. Feredation Proceedings, 44, 2944–2946.
Zurück zum Zitat Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin–Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215.PubMedCrossRef Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin–Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215.PubMedCrossRef
Zurück zum Zitat Rubin, J., & Wechselberger, M. (2007). Giant squid—hidden canard: The 3d geometry of the Hodgkin Huxley model. Biological Cybernetics, 97, 5–32.PubMedCrossRef Rubin, J., & Wechselberger, M. (2007). Giant squid—hidden canard: The 3d geometry of the Hodgkin Huxley model. Biological Cybernetics, 97, 5–32.PubMedCrossRef
Zurück zum Zitat Schmid, G., Goychuk, I., & Hänggi, P. (2001). Stochastic resonance as a collective property of ion channel assemblies. Europhysics Letters, 56, 22–28.CrossRef Schmid, G., Goychuk, I., & Hänggi, P. (2001). Stochastic resonance as a collective property of ion channel assemblies. Europhysics Letters, 56, 22–28.CrossRef
Zurück zum Zitat Schmid, G., Goychuk, I., & Hänggi, P. (2003). Channel noise and synchronization in excitable membranes. Physica A: Statistical Mechanics and its Applications, 325(1–2), 165–175.CrossRef Schmid, G., Goychuk, I., & Hänggi, P. (2003). Channel noise and synchronization in excitable membranes. Physica A: Statistical Mechanics and its Applications, 325(1–2), 165–175.CrossRef
Zurück zum Zitat Schneidmann, E., Freedman, B., & Segev, I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation, 10, 1679–1703.CrossRef Schneidmann, E., Freedman, B., & Segev, I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation, 10, 1679–1703.CrossRef
Zurück zum Zitat Shuai, J. W., & Jung, P. (2003). Optimal ion channel clustering for intracellular calcium signaling. Proceedings of the National Academy of Sciences, 100(2), 506–512.CrossRef Shuai, J. W., & Jung, P. (2003). Optimal ion channel clustering for intracellular calcium signaling. Proceedings of the National Academy of Sciences, 100(2), 506–512.CrossRef
Zurück zum Zitat Shuai, J. W., & Jung, P. (2005). Entropically enhanced excitability in small systems. Physical Review Letters, 95(11), 114501.PubMedCrossRef Shuai, J. W., & Jung, P. (2005). Entropically enhanced excitability in small systems. Physical Review Letters, 95(11), 114501.PubMedCrossRef
Zurück zum Zitat Skaugen, E., & Walloe, L. (1979). Firing behavior in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiologica Scandinavica, 107(4), 343–63.PubMedCrossRef Skaugen, E., & Walloe, L. (1979). Firing behavior in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Physiologica Scandinavica, 107(4), 343–63.PubMedCrossRef
Zurück zum Zitat Steinmetz, P. N., Manwani, A., Koch, C., London, M., & Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9(16), 133–148.PubMedCrossRef Steinmetz, P. N., Manwani, A., Koch, C., London, M., & Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9(16), 133–148.PubMedCrossRef
Zurück zum Zitat Suckley, R., & Biktashev, V. N. (2003). Comparison of asymptotics of heart and nerve excitability. Physical Review E, 68, 011902, 1–15. Suckley, R., & Biktashev, V. N. (2003). Comparison of asymptotics of heart and nerve excitability. Physical Review E, 68, 011902, 1–15.
Zurück zum Zitat Takahata, T., Tanabe, S., & Pakdaman, K. (2002). White noise stimulation of the Hodgkin–Huxley model. Biological Cybernetics, 86, 403–417.PubMedCrossRef Takahata, T., Tanabe, S., & Pakdaman, K. (2002). White noise stimulation of the Hodgkin–Huxley model. Biological Cybernetics, 86, 403–417.PubMedCrossRef
Zurück zum Zitat Tanabe, S., & Pakdaman, K. (2001). Noise-induced transition in excitable neuron models. Biological Cybernetics 85, 269–280.PubMedCrossRef Tanabe, S., & Pakdaman, K. (2001). Noise-induced transition in excitable neuron models. Biological Cybernetics 85, 269–280.PubMedCrossRef
Zurück zum Zitat Tanabe, S., & Pakdaman, K. (2001). Noise-enhanced neuronal reliability. Physical Review E, 64, 041904.CrossRef Tanabe, S., & Pakdaman, K. (2001). Noise-enhanced neuronal reliability. Physical Review E, 64, 041904.CrossRef
Zurück zum Zitat Tanabe, S., & Pakdaman, K. (2001). Dynamics of moments of Fitz–Hugh–Nagumo neuronal models and stochastic bifurcations. Physical Review E, 63, 031911.CrossRef Tanabe, S., & Pakdaman, K. (2001). Dynamics of moments of Fitz–Hugh–Nagumo neuronal models and stochastic bifurcations. Physical Review E, 63, 031911.CrossRef
Zurück zum Zitat Tanabe, S., Sato, S., & Pakdaman, K. (1999). Response of an ensemble of noisy neuron models to a single input. Physical Review E, 60, 7235–7238.CrossRef Tanabe, S., Sato, S., & Pakdaman, K. (1999). Response of an ensemble of noisy neuron models to a single input. Physical Review E, 60, 7235–7238.CrossRef
Zurück zum Zitat Tateno, T., & Pakdaman, K. (2004). Random dynamics of the Morris–Lecar neural model. Chaos, 14, 511–530.PubMedCrossRef Tateno, T., & Pakdaman, K. (2004). Random dynamics of the Morris–Lecar neural model. Chaos, 14, 511–530.PubMedCrossRef
Zurück zum Zitat Wainrib, G., Thieullen, M., & Pakdaman, K. (2010). Intrinsic variability of latency to first spike. Biological Cybernetics, 103(1), 43–56.PubMedCrossRef Wainrib, G., Thieullen, M., & Pakdaman, K. (2010). Intrinsic variability of latency to first spike. Biological Cybernetics, 103(1), 43–56.PubMedCrossRef
Zurück zum Zitat White, J. A., Rubinstein, J. T., & Kay, A. R. (2000). Channel noise in neurons. Trends in Neurosciences, 23(3), 131–137.PubMedCrossRef White, J. A., Rubinstein, J. T., & Kay, A. R. (2000). Channel noise in neurons. Trends in Neurosciences, 23(3), 131–137.PubMedCrossRef
Zurück zum Zitat Yin, G. G., & Zhang, Q. (1998). Continuous-time Markov chains and applications: A singular perturbation approach. New York: Springer. Yin, G. G., & Zhang, Q. (1998). Continuous-time Markov chains and applications: A singular perturbation approach. New York: Springer.
Metadaten
Titel
Reduction of stochastic conductance-based neuron models with time-scales separation
verfasst von
Gilles Wainrib
Michèle Thieullen
Khashayar Pakdaman
Publikationsdatum
01.04.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0355-7

Weitere Artikel der Ausgabe 2/2012

Journal of Computational Neuroscience 2/2012 Zur Ausgabe

Premium Partner