Skip to main content
Erschienen in: Journal of Materials Science 20/2014

01.10.2014 | Original Paper

Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites

verfasst von: Robert D. Schmidt, Eldon D. Case, Zayra Lobo, Travis R. Thompson, Jeffrey S. Sakamoto, Xiao-Yuan Zhou, Ctirad Uher

Erschienen in: Journal of Materials Science | Ausgabe 20/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermoelectric skutterudite Ba0.3Co4Sb12 is a promising candidate for waste heat recovery applications. Recently, it was demonstrated that the addition of silver nanoparticles (AgNP) to Ba0.3Co4Sb12 increases both the thermoelectric figure of merit and electrical conductivity. This study is the first to examine the effect of AgNP addition on the material’s mechanical properties. This study also found that the Young’s modulus, E, shear modulus, G, and bulk modulus, B, decreased linearly with increasing volume fraction porosity, P. Resonant ultrasound spectroscopy was employed to measure the elastic moduli, and Vickers indentation was used to determine the hardness, H, and fracture toughness, K C. Trends in the mechanical properties as a function of grain size, porosity, and the AgNP are discussed in terms of the pertinent literature. While K C was independent of AgNP addition, porosity, and grain size, both E and H decreased linearly with increasing porosity. In addition, this study is the first to identify (i) the Ag3Sb phase formed and (ii) the enhanced densification that occurs when the AgNP is sintered with Ba0.3Co4Sb12 powders, where both effects are consistent with the eutectic and peritectic reactions observed in the binary phase diagram Ag–Sb. These eutectic/peritectic reactions may also be linked to the enhancement of electrical conductivity previously observed when Ag is added to Ba0.3Co4Sb12. Also, similar beneficial eutectic/peritectic reactions may be available for other systems where conductive particles are added to other antimonides or other thermoelectric systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ioffe AF (1960) Physics of semicondutors. Infosearch Limited, London, p 313 Ioffe AF (1960) Physics of semicondutors. Infosearch Limited, London, p 313
2.
Zurück zum Zitat Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846CrossRef Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846CrossRef
3.
Zurück zum Zitat Segerlind LG (1984) Applied finite element analysis, 2nd edn. Wiley, New York Segerlind LG (1984) Applied finite element analysis, 2nd edn. Wiley, New York
4.
Zurück zum Zitat Hutton D (2004) Fundamentals of finite element analysis. McGraw-Hill, Boston Hutton D (2004) Fundamentals of finite element analysis. McGraw-Hill, Boston
5.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Boston Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Boston
6.
Zurück zum Zitat Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics. Wiley-VCH, HobokenCrossRef Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics. Wiley-VCH, HobokenCrossRef
7.
Zurück zum Zitat Ren F, Case ED, Timm EJ, Schock HJ (2008) Hardness as a function of composition for n-type LAST thermoelectric material. J Alloy Compd 455:340–345CrossRef Ren F, Case ED, Timm EJ, Schock HJ (2008) Hardness as a function of composition for n-type LAST thermoelectric material. J Alloy Compd 455:340–345CrossRef
8.
Zurück zum Zitat Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamoto J, Uher C (2012) Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J Mater Chem 22:2958–2964CrossRef Zhou X, Wang G, Zhang L, Chi H, Su X, Sakamoto J, Uher C (2012) Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J Mater Chem 22:2958–2964CrossRef
9.
Zurück zum Zitat Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1 − x)Sn(x)Te-PbS. J Am Chem Soc 129:9780–9788CrossRef Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1 − x)Sn(x)Te-PbS. J Am Chem Soc 129:9780–9788CrossRef
10.
Zurück zum Zitat Zhao LD, He J, Hao S, Wu C-I, Hogan TP, Wolverton C, Dravid VP, Kanatzidis MG (2012) Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134:16327–16336CrossRef Zhao LD, He J, Hao S, Wu C-I, Hogan TP, Wolverton C, Dravid VP, Kanatzidis MG (2012) Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134:16327–16336CrossRef
11.
Zurück zum Zitat Zhou M, Li J-F, Kita T (2008) Nanostructured AgPb(m)SbTe(m + 2) system bulk materials with enhanced thermoelectric performance. J Am Chem Soc 130:4527–4532CrossRef Zhou M, Li J-F, Kita T (2008) Nanostructured AgPb(m)SbTe(m + 2) system bulk materials with enhanced thermoelectric performance. J Am Chem Soc 130:4527–4532CrossRef
12.
Zurück zum Zitat Alleno E, Chen L, Chubilleau C, Lenoir B, Rouleau O, Trichet MF, Villeroy B (2009) Thermal conductivity reduction in CoSb3–CeO2 nanocomposites. J Electron Mater 39:1966–1970CrossRef Alleno E, Chen L, Chubilleau C, Lenoir B, Rouleau O, Trichet MF, Villeroy B (2009) Thermal conductivity reduction in CoSb3–CeO2 nanocomposites. J Electron Mater 39:1966–1970CrossRef
13.
Zurück zum Zitat Ji X, He J, Alboni P, Su Z, Gothard N, Zhang B, Tritt TM, Kolis JW (2007) Thermal conductivity of CoSb3 nano-composites grown via a novel solvothermal nano-plating technique. Phys Status Solidi RRL 1:229–231CrossRef Ji X, He J, Alboni P, Su Z, Gothard N, Zhang B, Tritt TM, Kolis JW (2007) Thermal conductivity of CoSb3 nano-composites grown via a novel solvothermal nano-plating technique. Phys Status Solidi RRL 1:229–231CrossRef
14.
Zurück zum Zitat Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L, Muller E, Gatti C, Zhang Y, Rowe M, Muhammed M (2004) The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv Funct Mater 14:1189–1196CrossRef Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L, Muller E, Gatti C, Zhang Y, Rowe M, Muhammed M (2004) The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv Funct Mater 14:1189–1196CrossRef
15.
Zurück zum Zitat Mi JL, Zhao XB, Zhu TJ, Tu JP (2008) Thermoelectric properties of Yb 0.15 Co 4 Sb 12 based nanocomposites with CoSb 3 nano-inclusion. J Phys D 41:205403 Mi JL, Zhao XB, Zhu TJ, Tu JP (2008) Thermoelectric properties of Yb 0.15 Co 4 Sb 12 based nanocomposites with CoSb 3 nano-inclusion. J Phys D 41:205403
16.
Zurück zum Zitat Yoon S, Kwon O-J, Ahn S, Kim J-Y, Koo H, Bae S-H, Cho J-Y, Kim J-S, Park C (2013) The effect of grain size and density on the thermoelectric properties of Bi2Te3–PbTe compounds. J Electron Mater 42:3390–3396CrossRef Yoon S, Kwon O-J, Ahn S, Kim J-Y, Koo H, Bae S-H, Cho J-Y, Kim J-S, Park C (2013) The effect of grain size and density on the thermoelectric properties of Bi2Te3–PbTe compounds. J Electron Mater 42:3390–3396CrossRef
17.
Zurück zum Zitat Tokiai T, Uesugi T, Nosaka M, Hirayama A, Ito K, Koumoto K (1997) Thermoelectric properties of Mn-doped iron disilicide ceramics fabricated from radio-frequency plasma-treated fine powders. J Mater Sci 32:3007–3011. doi:10.1023/A:1018609508637 CrossRef Tokiai T, Uesugi T, Nosaka M, Hirayama A, Ito K, Koumoto K (1997) Thermoelectric properties of Mn-doped iron disilicide ceramics fabricated from radio-frequency plasma-treated fine powders. J Mater Sci 32:3007–3011. doi:10.​1023/​A:​1018609508637 CrossRef
18.
Zurück zum Zitat Case ED (2012) Thermal fatigue and waste heat recovery via thermoelectrics. J Electron Mater 41:1811–1819CrossRef Case ED (2012) Thermal fatigue and waste heat recovery via thermoelectrics. J Electron Mater 41:1811–1819CrossRef
19.
Zurück zum Zitat Case ED (2012) Chapter 16, Thermo-mechanical properties of thermoelectric materials. In: Rowe DM (ed) Thermoelectrics and its energy harvesting: modules, systems and applications. CRC Press, Taylor and Francis Group, Boca Raton, pp 16-1 to 16-29 Case ED (2012) Chapter 16, Thermo-mechanical properties of thermoelectric materials. In: Rowe DM (ed) Thermoelectrics and its energy harvesting: modules, systems and applications. CRC Press, Taylor and Francis Group, Boca Raton, pp 16-1 to 16-29
20.
Zurück zum Zitat Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107:094308CrossRef Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107:094308CrossRef
21.
Zurück zum Zitat Yang L, Wu JS, Zhang LT (2004) Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J Alloy Compd 364:83–88CrossRef Yang L, Wu JS, Zhang LT (2004) Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J Alloy Compd 364:83–88CrossRef
22.
Zurück zum Zitat He Q, Hu S, Tang X, Lan Y, Yang J, Wang X, Ren Z, Hao Q, Chen G (2008) The great improvement effect of pores on ZT in Co1−xNixSb3 system. Appl Phys Lett 93:042108CrossRef He Q, Hu S, Tang X, Lan Y, Yang J, Wang X, Ren Z, Hao Q, Chen G (2008) The great improvement effect of pores on ZT in Co1−xNixSb3 system. Appl Phys Lett 93:042108CrossRef
23.
Zurück zum Zitat Wen P, Duan B, Zhai P, Li P, Zhang Q (2013) Effect of thermal annealing on the microstructure and thermoelectric properties of nano-TiN–Co4Sb11.5Te0.5 composites. J Mater Sci: Mater Electron 24:5155–5161 Wen P, Duan B, Zhai P, Li P, Zhang Q (2013) Effect of thermal annealing on the microstructure and thermoelectric properties of nano-TiN–Co4Sb11.5Te0.5 composites. J Mater Sci: Mater Electron 24:5155–5161
24.
Zurück zum Zitat Pilchak AL, Ren F, Case ED, Timm EJ, Schock HJ, Wu C-I, Hogan TP (2007) Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material. Philos Mag 87:4567–4591CrossRef Pilchak AL, Ren F, Case ED, Timm EJ, Schock HJ, Wu C-I, Hogan TP (2007) Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material. Philos Mag 87:4567–4591CrossRef
25.
Zurück zum Zitat Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin C-H, Kanatzidis MG (2009) Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos Mag 89:143–167CrossRef Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin C-H, Kanatzidis MG (2009) Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials. Philos Mag 89:143–167CrossRef
26.
Zurück zum Zitat Ni JE, Case ED, Khabir KN, Stewart RC, Wu C-I, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. Mater Sci Eng B 170:58–66CrossRef Ni JE, Case ED, Khabir KN, Stewart RC, Wu C-I, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. Mater Sci Eng B 170:58–66CrossRef
27.
Zurück zum Zitat Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) Room temperature Young’s modulus, shear modulus, and Poisson’s ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials. J Alloy Compd 504:303–309CrossRef Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) Room temperature Young’s modulus, shear modulus, and Poisson’s ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials. J Alloy Compd 504:303–309CrossRef
28.
Zurück zum Zitat Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation. Wiley-VCH, New York Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation. Wiley-VCH, New York
29.
Zurück zum Zitat Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material. Intermetallics 35:15–24CrossRef Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material. Intermetallics 35:15–24CrossRef
31.
Zurück zum Zitat Underwood EE (1969) Stereology, or the quantitative evaluation of microstructures. J Microsc 89:161–180CrossRef Underwood EE (1969) Stereology, or the quantitative evaluation of microstructures. J Microsc 89:161–180CrossRef
32.
Zurück zum Zitat Case ED, Smyth JR, Monthei V (1981) Grain-size determinations. J Am Ceram Soc 64:C24–C25CrossRef Case ED, Smyth JR, Monthei V (1981) Grain-size determinations. J Am Ceram Soc 64:C24–C25CrossRef
33.
Zurück zum Zitat Barsoum MW (2003) Fundamentals of ceramics. Taylor & Francis Group, New YorkCrossRef Barsoum MW (2003) Fundamentals of ceramics. Taylor & Francis Group, New YorkCrossRef
34.
Zurück zum Zitat Voronin MV, Osadchii EG (2013) Standard thermodynamic properties of Ag3Sb and Ag6Sb evaluated by EMF measurements. Inorg Mater 49:550–554CrossRef Voronin MV, Osadchii EG (2013) Standard thermodynamic properties of Ag3Sb and Ag6Sb evaluated by EMF measurements. Inorg Mater 49:550–554CrossRef
35.
Zurück zum Zitat Cipriani C, Corazza M, Mazzetti G (1996) Reinvestigation of natural silver antimonides. Eur J Mineral 8:1347–1350 Cipriani C, Corazza M, Mazzetti G (1996) Reinvestigation of natural silver antimonides. Eur J Mineral 8:1347–1350
36.
Zurück zum Zitat Feschotte P, Monachon F, Durussel P (1992) The binary system Sb–Ag: a revision of the Ag3Sb phase boundaries. J Alloy Compd 186:L17–L18CrossRef Feschotte P, Monachon F, Durussel P (1992) The binary system Sb–Ag: a revision of the Ag3Sb phase boundaries. J Alloy Compd 186:L17–L18CrossRef
37.
Zurück zum Zitat Okamoto H (2007) Ag–Sb (silver–antimony). J Phase Equilibria 28:403 Okamoto H (2007) Ag–Sb (silver–antimony). J Phase Equilibria 28:403
38.
Zurück zum Zitat Hassam S, Bahari Z, Legendre B (2001) Phase diagrams of the Ag–Bi–Sb ternary system. J Alloy Compd 315:211–217CrossRef Hassam S, Bahari Z, Legendre B (2001) Phase diagrams of the Ag–Bi–Sb ternary system. J Alloy Compd 315:211–217CrossRef
39.
Zurück zum Zitat Okamoto H (1993) Ag–Sb (silver–antimony). J Phase Equilibria 14:531–532CrossRef Okamoto H (1993) Ag–Sb (silver–antimony). J Phase Equilibria 14:531–532CrossRef
40.
Zurück zum Zitat Zhang L, Sakamoto J (2013) The microstructural stability and thermoelectric properties of Mm0.9Fe3.5Co0.5Sb12-based skutterudites. Mater Chem Phys 138:601–607CrossRef Zhang L, Sakamoto J (2013) The microstructural stability and thermoelectric properties of Mm0.9Fe3.5Co0.5Sb12-based skutterudites. Mater Chem Phys 138:601–607CrossRef
41.
Zurück zum Zitat Bukat K, Koscielski M, Sitek J, Jakubowska M, Miozniak A (2011) Silver nanoparticles effect on the wettability of Sn–Ag–Cu solder pastes and solder joints microstructure on copper. Solder Surf Mt Technol 23:150–160CrossRef Bukat K, Koscielski M, Sitek J, Jakubowska M, Miozniak A (2011) Silver nanoparticles effect on the wettability of Sn–Ag–Cu solder pastes and solder joints microstructure on copper. Solder Surf Mt Technol 23:150–160CrossRef
42.
Zurück zum Zitat Dharma IGBB, Shukor MHA, Ariga T (2009) Wettability of low silver content lead-free solder alloy. Mater Trans 50:1135–1138CrossRef Dharma IGBB, Shukor MHA, Ariga T (2009) Wettability of low silver content lead-free solder alloy. Mater Trans 50:1135–1138CrossRef
43.
Zurück zum Zitat Yoshizawa M, Nakanishi Y, Kumagai T, Oikawa M, Sekine C, Shirotani I (2004) Elastic anomalies of polycrystalline SmRu4P12 associated with metal-insulator transition. J Phys Soc Jpn 73:315–318CrossRef Yoshizawa M, Nakanishi Y, Kumagai T, Oikawa M, Sekine C, Shirotani I (2004) Elastic anomalies of polycrystalline SmRu4P12 associated with metal-insulator transition. J Phys Soc Jpn 73:315–318CrossRef
44.
Zurück zum Zitat Slack GA, Tsoukala VG (1994) Some properties of semiconducting IrSb3. J Appl Phys 76:1665–1671CrossRef Slack GA, Tsoukala VG (1994) Some properties of semiconducting IrSb3. J Appl Phys 76:1665–1671CrossRef
45.
Zurück zum Zitat Morelli DT, Meisner GP (1995) Low temperature properties of the filled skutterudite CeFe4Sb12. J Appl Phys 77:3777–3781CrossRef Morelli DT, Meisner GP (1995) Low temperature properties of the filled skutterudite CeFe4Sb12. J Appl Phys 77:3777–3781CrossRef
46.
Zurück zum Zitat Nolas GS, Morelli DT, Tritt TM (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116CrossRef Nolas GS, Morelli DT, Tritt TM (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116CrossRef
47.
Zurück zum Zitat Nolas GS, Kaeser M, Littleton RT, Tritt TM (2000) High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 77:1855–1857CrossRef Nolas GS, Kaeser M, Littleton RT, Tritt TM (2000) High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 77:1855–1857CrossRef
48.
Zurück zum Zitat Uher C (2001) Skutterudites: prospective novel thermoelectrics. In: Tritt TM (ed) Semiconductors and semimetals, vol 69. Academic Press, San Diego, pp 139–253 Uher C (2001) Skutterudites: prospective novel thermoelectrics. In: Tritt TM (ed) Semiconductors and semimetals, vol 69. Academic Press, San Diego, pp 139–253
49.
Zurück zum Zitat Zhang L, Rogl G, Grytsiv A, Puchegger S, Koppensteiner J, Spieckermann F, Kabelka H, Reinecker M, Rogl P, Schranz W, Zehetbauer M, Carpenter MA (2010) Mechanical properties of filled antimonide skutterudites. Mater Sci Eng B 170:26–31CrossRef Zhang L, Rogl G, Grytsiv A, Puchegger S, Koppensteiner J, Spieckermann F, Kabelka H, Reinecker M, Rogl P, Schranz W, Zehetbauer M, Carpenter MA (2010) Mechanical properties of filled antimonide skutterudites. Mater Sci Eng B 170:26–31CrossRef
50.
Zurück zum Zitat Xiong DB, Okamoto NL, Inui H (2013) Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr Mater 69:397–400CrossRef Xiong DB, Okamoto NL, Inui H (2013) Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr Mater 69:397–400CrossRef
51.
Zurück zum Zitat Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143–150CrossRef Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143–150CrossRef
52.
Zurück zum Zitat Halpin JC (1992) Primer on composite materials analysis. Technomic Publishing Company Inc., Lancaster Halpin JC (1992) Primer on composite materials analysis. Technomic Publishing Company Inc., Lancaster
53.
Zurück zum Zitat Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg–AZ91/AlN composites. Mater Des 38:91–98CrossRef Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg–AZ91/AlN composites. Mater Des 38:91–98CrossRef
54.
Zurück zum Zitat Couturier R, Ducret D, Merle P, Disson JP, Joubert P (1997) Elaboration and characterization of a metal matrix composite: Al/AlN. J Eur Ceram Soc 17:1861–1866CrossRef Couturier R, Ducret D, Merle P, Disson JP, Joubert P (1997) Elaboration and characterization of a metal matrix composite: Al/AlN. J Eur Ceram Soc 17:1861–1866CrossRef
55.
Zurück zum Zitat Ni JE, Ren F, Case ED, Timm EJ (2009) Porosity dependence of elastic moduli in LAST (lead–antimony–silver–tellurium) thermoelectric materials. Mater Chem Phys 118:459–466CrossRef Ni JE, Ren F, Case ED, Timm EJ (2009) Porosity dependence of elastic moduli in LAST (lead–antimony–silver–tellurium) thermoelectric materials. Mater Chem Phys 118:459–466CrossRef
56.
Zurück zum Zitat Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York
57.
Zurück zum Zitat Ramakrishan N, Arunachalam VS (1993) Effective elastic moduli of porous ceramic materials. J Am Ceram Soc 76:2745–2752CrossRef Ramakrishan N, Arunachalam VS (1993) Effective elastic moduli of porous ceramic materials. J Am Ceram Soc 76:2745–2752CrossRef
58.
Zurück zum Zitat Boccaccini AR (1994) Comment on “Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 77:2779–2781CrossRef Boccaccini AR (1994) Comment on “Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 77:2779–2781CrossRef
59.
Zurück zum Zitat Rice RW (1995) Comment on ‘Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 78:1711CrossRef Rice RW (1995) Comment on ‘Effective Elastic Moduli of Porous Ceramic Materials”. J Am Ceram Soc 78:1711CrossRef
60.
Zurück zum Zitat Dunn ML, Ledbetter H (1995) Poisson’s ratio of porous and microcracked solids: theory and application to oxide superconductors. J Mater Res 10:2715–2722CrossRef Dunn ML, Ledbetter H (1995) Poisson’s ratio of porous and microcracked solids: theory and application to oxide superconductors. J Mater Res 10:2715–2722CrossRef
61.
Zurück zum Zitat Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Mater 11:361–367CrossRef Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Mater 11:361–367CrossRef
62.
Zurück zum Zitat Zawrah MF, Abdel-kader H, Elbaly NE (2012) Fabrication of Al2O3–20vol% Al nanocomposite powders using high energy milling and their sinterability. Mater Res Bull 47:655–661CrossRef Zawrah MF, Abdel-kader H, Elbaly NE (2012) Fabrication of Al2O3–20vol% Al nanocomposite powders using high energy milling and their sinterability. Mater Res Bull 47:655–661CrossRef
63.
Zurück zum Zitat Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP (2010) Toughening mechanisms in iron-containing hydroxyapatite/titanium composites. Biomaterials 31:1493–1501CrossRef Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP (2010) Toughening mechanisms in iron-containing hydroxyapatite/titanium composites. Biomaterials 31:1493–1501CrossRef
64.
Zurück zum Zitat Fujieda T, Uno M, Ishigami H, Kurachi M, Wakamatsu N, Doi Y (2012) Addition of platinum and silver nanoparticles to toughen dental porcelain. Dent Mater J 31:711–716CrossRef Fujieda T, Uno M, Ishigami H, Kurachi M, Wakamatsu N, Doi Y (2012) Addition of platinum and silver nanoparticles to toughen dental porcelain. Dent Mater J 31:711–716CrossRef
66.
Zurück zum Zitat Ramadass N, Mohan S, Reddy SR (1983) Studies on the metastable phase retention and hardness in zirconia ceramics. Mater Sci Eng 60:65–72CrossRef Ramadass N, Mohan S, Reddy SR (1983) Studies on the metastable phase retention and hardness in zirconia ceramics. Mater Sci Eng 60:65–72CrossRef
67.
Zurück zum Zitat Mangalaraja RV, Ananthakumar S, Uma K, Jiménez RM, López M, Camurri CP (2009) Microhardness and fracture toughness of Ce0.9Gd0.1O1.95 for manufacturing solid oxide electrolytes. Mater Sci Eng A 517:91–96CrossRef Mangalaraja RV, Ananthakumar S, Uma K, Jiménez RM, López M, Camurri CP (2009) Microhardness and fracture toughness of Ce0.9Gd0.1O1.95 for manufacturing solid oxide electrolytes. Mater Sci Eng A 517:91–96CrossRef
68.
69.
Zurück zum Zitat Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S (2008) Mechanical properties of thermoelectric skutterudites. Proc Am Inst Phys Conf, Space Technol Appl Int Forum, Albuquerque, NM, pp 10–14 Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S (2008) Mechanical properties of thermoelectric skutterudites. Proc Am Inst Phys Conf, Space Technol Appl Int Forum, Albuquerque, NM, pp 10–14
70.
Zurück zum Zitat Eilertsen J, Subramanian MA, Kruzic JJ (2013) Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J Alloy Compd 552:492–498CrossRef Eilertsen J, Subramanian MA, Kruzic JJ (2013) Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J Alloy Compd 552:492–498CrossRef
71.
Zurück zum Zitat Rogl G, Rogl P (2011) Mechanical properties of skutterudites. Sci Adv Mater 3:517–538CrossRef Rogl G, Rogl P (2011) Mechanical properties of skutterudites. Sci Adv Mater 3:517–538CrossRef
72.
Zurück zum Zitat Pharr GM, Herbert EG, Gao Y (2010) The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res 40:271–292CrossRef Pharr GM, Herbert EG, Gao Y (2010) The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res 40:271–292CrossRef
73.
Zurück zum Zitat Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRef Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRef
74.
Zurück zum Zitat Bull SJ, Page TF, Yoffe EH (1989) An explanation of the indentation size effect in ceramics. Philos Mag Lett 59:281–288CrossRef Bull SJ, Page TF, Yoffe EH (1989) An explanation of the indentation size effect in ceramics. Philos Mag Lett 59:281–288CrossRef
75.
Zurück zum Zitat Sangwal K (2009) Review: indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends. Cryst Res Technol 44:1019–1037CrossRef Sangwal K (2009) Review: indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends. Cryst Res Technol 44:1019–1037CrossRef
76.
Zurück zum Zitat Sangwal K (2000) On the reverse indentation size effect and microhardness measurement of solids. Mater Chem Phys 63:145–152CrossRef Sangwal K (2000) On the reverse indentation size effect and microhardness measurement of solids. Mater Chem Phys 63:145–152CrossRef
77.
Zurück zum Zitat Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker, New YorkCrossRef Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker, New YorkCrossRef
78.
Zurück zum Zitat Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, New YorkCrossRef Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, New YorkCrossRef
79.
Zurück zum Zitat Armstrong RW (2011) The hardness and strength properties of WC–Co composites. Matereials 4:1287–1308CrossRef Armstrong RW (2011) The hardness and strength properties of WC–Co composites. Matereials 4:1287–1308CrossRef
80.
Zurück zum Zitat Monroe LD, Smyth JR (1978) Grain size dependence of the fracture energy of Y2O3. J Am Ceram Soc 61:538–539CrossRef Monroe LD, Smyth JR (1978) Grain size dependence of the fracture energy of Y2O3. J Am Ceram Soc 61:538–539CrossRef
81.
Zurück zum Zitat Rhoades WH, Baldoni JG, Wei GC (1986) Final report for ORN contract N00014-82-C-0452. GTE Laboratory Rhoades WH, Baldoni JG, Wei GC (1986) Final report for ORN contract N00014-82-C-0452. GTE Laboratory
82.
Zurück zum Zitat Yasuda K, Kim SD, Kanemichi Y (1990) Influence of grain size and temperature on fracture toughness of MgO sintered body. J Ceram Soc Jpn 98:1103–1108CrossRef Yasuda K, Kim SD, Kanemichi Y (1990) Influence of grain size and temperature on fracture toughness of MgO sintered body. J Ceram Soc Jpn 98:1103–1108CrossRef
83.
Zurück zum Zitat Veldkamp JDB, Hattu N (1979) On the fracture toughness of brittle materials. Philips J Res 34:1–25 Veldkamp JDB, Hattu N (1979) On the fracture toughness of brittle materials. Philips J Res 34:1–25
85.
Zurück zum Zitat Yao W, Liu J, Holland TB, Huang L, Xiong Y, Schoenung JM, Mukherjee AK (2011) Grain size dependence of fracture toughness for fine grained alumina. Scr Mater 65:143–146CrossRef Yao W, Liu J, Holland TB, Huang L, Xiong Y, Schoenung JM, Mukherjee AK (2011) Grain size dependence of fracture toughness for fine grained alumina. Scr Mater 65:143–146CrossRef
86.
Zurück zum Zitat Vekinis G, Ashby MF, Beaumont PWR (1990) R-curve behavior of Al2O3 ceramics. Acta Metall Mater 38:1151–1162CrossRef Vekinis G, Ashby MF, Beaumont PWR (1990) R-curve behavior of Al2O3 ceramics. Acta Metall Mater 38:1151–1162CrossRef
87.
Zurück zum Zitat Swanson PL, Fairbanks CJ, Lawn BR, Mai YW, Hockey BJ (1987) Crack-interface grain bridging as a fracture-resistance mechanism in ceramics. J Am Ceram Soc 70:279–289CrossRef Swanson PL, Fairbanks CJ, Lawn BR, Mai YW, Hockey BJ (1987) Crack-interface grain bridging as a fracture-resistance mechanism in ceramics. J Am Ceram Soc 70:279–289CrossRef
88.
Zurück zum Zitat Foulk JW III, Cannon RM, Johnson GC, Klein PA, Ritchie RO (2007) A micromechanical basis for partitioning the evolution of grain bridging in brittle materials. J Mech Phys Solids 55:719–743CrossRef Foulk JW III, Cannon RM, Johnson GC, Klein PA, Ritchie RO (2007) A micromechanical basis for partitioning the evolution of grain bridging in brittle materials. J Mech Phys Solids 55:719–743CrossRef
89.
Zurück zum Zitat Bennison SJ, Lawn BR (1989) Role of interfacial grain-bridging sliding friction in the crack resistance and strength of nontransforming ceramics. Acta Metall 37:2659–2671CrossRef Bennison SJ, Lawn BR (1989) Role of interfacial grain-bridging sliding friction in the crack resistance and strength of nontransforming ceramics. Acta Metall 37:2659–2671CrossRef
90.
Zurück zum Zitat Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTe1±x–ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.1007/s10853-013-7637-6 CrossRef Schmidt RD, Case ED, Ni JE, Trejo RM, Lara-Curzio E, Korkosz RJ, Kanatzidis MG (2013) High-temperature elastic moduli of thermoelectric SnTe1±x–ySiC nanoparticulate composites. J Mater Sci 48:8244–8258. doi:10.​1007/​s10853-013-7637-6 CrossRef
91.
Zurück zum Zitat Hasselman DPH, Fulrath RM (1965) Effect of spherical tungsten dispersions on young’s modulus of a glass. J Am Ceram Soc 48:548–549CrossRef Hasselman DPH, Fulrath RM (1965) Effect of spherical tungsten dispersions on young’s modulus of a glass. J Am Ceram Soc 48:548–549CrossRef
92.
Zurück zum Zitat Lowrie R, Gonas AM (1967) Single crystal elastic properties of tungsten from 24° to 1800°C. J Appl Phys 38:4505–4509CrossRef Lowrie R, Gonas AM (1967) Single crystal elastic properties of tungsten from 24° to 1800°C. J Appl Phys 38:4505–4509CrossRef
93.
Zurück zum Zitat Macfarlane RE, Rayne JA (1965) Anomalous temperature dependence of shear modulus c44 for platinum. Phys Lett 18:91–92CrossRef Macfarlane RE, Rayne JA (1965) Anomalous temperature dependence of shear modulus c44 for platinum. Phys Lett 18:91–92CrossRef
94.
Zurück zum Zitat Neighbours J, Alers G (1958) Elastic constants of silver and gold. Phys Rev 885:707–712CrossRef Neighbours J, Alers G (1958) Elastic constants of silver and gold. Phys Rev 885:707–712CrossRef
95.
Zurück zum Zitat Chang YA, Himmel L (1966) Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. J Appl Phys 37:3567–3572CrossRef Chang YA, Himmel L (1966) Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. J Appl Phys 37:3567–3572CrossRef
Metadaten
Titel
Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites
verfasst von
Robert D. Schmidt
Eldon D. Case
Zayra Lobo
Travis R. Thompson
Jeffrey S. Sakamoto
Xiao-Yuan Zhou
Ctirad Uher
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8427-5

Weitere Artikel der Ausgabe 20/2014

Journal of Materials Science 20/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.