Skip to main content
Erschienen in: Journal of Materials Science 4/2015

01.02.2015 | Original Paper

Role of different factors in the glass-forming ability of binary alloys

verfasst von: D. V. Louzguine-Luzgin, N. Chen, A. Yu. Churymov, L. V. Louzguina-Luzgina, V. I. Polkin, L. Battezzati, A. R. Yavari

Erschienen in: Journal of Materials Science | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, we discuss the glass-forming ability of various binary alloys in which the glassy phase was not formed even by melt spinning technique with high cooling rate of the melt up to 1 MK/s (some consisted of partly glassy phase), though by commonly accepted guidelines, these alloys could be as good glass-formers as many other binary glasses. The alloys studied belong to binary systems with multiple eutectics; the constituent elements have a negative enthalpy of mixing, and a significant variability of atomic size differences is observed from system to system. The results indicate the necessity of taking into account simultaneously various factors influencing the glass-forming ability including melt fragility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Inoue A (1995) High-strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM 36:866–875CrossRef Inoue A (1995) High-strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM 36:866–875CrossRef
3.
Zurück zum Zitat Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef
4.
Zurück zum Zitat Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56CrossRef Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56CrossRef
5.
Zurück zum Zitat Louzguine-Luzgin DV, Inoue A (2013) Bulk metallic glasses. formation, structure, properties, and applications. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier, New York, pp 131–171 Louzguine-Luzgin DV, Inoue A (2013) Bulk metallic glasses. formation, structure, properties, and applications. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier, New York, pp 131–171
6.
Zurück zum Zitat Louzguine-Luzgin DV, Louzguina-Luzgina LV, Ketov SV, Zadorozhnyy VYu, Greer AL (2014) Influence of cyclic loading on the onset of failure in a Zr-based bulk metallic glass. J Mater Sci 49:6716–6721. doi:10.1007/s10853-014-8276-2 CrossRef Louzguine-Luzgin DV, Louzguina-Luzgina LV, Ketov SV, Zadorozhnyy VYu, Greer AL (2014) Influence of cyclic loading on the onset of failure in a Zr-based bulk metallic glass. J Mater Sci 49:6716–6721. doi:10.​1007/​s10853-014-8276-2 CrossRef
7.
Zurück zum Zitat Louzguine-Luzgin DV, Xie G, Zhang Q, Suryanarayana C, Inoue A (2010) Formation, structure, and crystallization behavior of Cu-based bulk glass-forming alloys. Metall Mater Trans A 41:1664–1669CrossRef Louzguine-Luzgin DV, Xie G, Zhang Q, Suryanarayana C, Inoue A (2010) Formation, structure, and crystallization behavior of Cu-based bulk glass-forming alloys. Metall Mater Trans A 41:1664–1669CrossRef
8.
Zurück zum Zitat Louzguine-Luzgin DV, Miracle DB, Louzguina-Luzgina L, Inoue A (2010) Comparative analysis of glass-formation in binary, ternary, and multicomponent alloys. J Appl Phys 108:103511CrossRef Louzguine-Luzgin DV, Miracle DB, Louzguina-Luzgina L, Inoue A (2010) Comparative analysis of glass-formation in binary, ternary, and multicomponent alloys. J Appl Phys 108:103511CrossRef
9.
Zurück zum Zitat Louzguine DV, Inoue A (2002) Comparison of the long-term thermal stability of various metallic glasses under continuous heating. Scripta Mater 47:887–891CrossRef Louzguine DV, Inoue A (2002) Comparison of the long-term thermal stability of various metallic glasses under continuous heating. Scripta Mater 47:887–891CrossRef
10.
Zurück zum Zitat Louzguine DV, Inoue A (2001) Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl Phys Lett 79:3410–3412CrossRef Louzguine DV, Inoue A (2001) Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl Phys Lett 79:3410–3412CrossRef
11.
Zurück zum Zitat Egami T, Waseda Y (1984) Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids 64:113–134CrossRef Egami T, Waseda Y (1984) Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids 64:113–134CrossRef
12.
Zurück zum Zitat Egami T (1996) The atomic structure of aluminum based metallic glasses and universal criterion for glass-formation. J Non-Cryst Solids 205–207:575–582CrossRef Egami T (1996) The atomic structure of aluminum based metallic glasses and universal criterion for glass-formation. J Non-Cryst Solids 205–207:575–582CrossRef
13.
Zurück zum Zitat Miracle DB, Senkov ON (2003) Topological criterion for metallic glass formation. Mater Sci Eng A 347:50–58CrossRef Miracle DB, Senkov ON (2003) Topological criterion for metallic glass formation. Mater Sci Eng A 347:50–58CrossRef
14.
Zurück zum Zitat Miracle DB (2006) The efficient cluster packing model. An atomic structural model for metallic glasses. Acta Mater 54:4317–4336CrossRef Miracle DB (2006) The efficient cluster packing model. An atomic structural model for metallic glasses. Acta Mater 54:4317–4336CrossRef
15.
Zurück zum Zitat Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to- medium-range order in metallic glasses. Nature 439:419–425CrossRef Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to- medium-range order in metallic glasses. Nature 439:419–425CrossRef
16.
Zurück zum Zitat Tamura K, Endo H (1969) Ferromagnetic Properties of Amorphous Nickel. Phys Lett A 29:52–53CrossRef Tamura K, Endo H (1969) Ferromagnetic Properties of Amorphous Nickel. Phys Lett A 29:52–53CrossRef
17.
Zurück zum Zitat Davies HA (1983) Metallic glass formation. In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, pp 8–25CrossRef Davies HA (1983) Metallic glass formation. In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, pp 8–25CrossRef
18.
Zurück zum Zitat Louzguine-Luzgin DV, Belosludov R, Saito M, Kawazoe Y, Inoue A (2008) Glass-transition behavior of Ni: Calculation, prediction, and experiment. J Appl Phys 104:123529–1–123529-5CrossRef Louzguine-Luzgin DV, Belosludov R, Saito M, Kawazoe Y, Inoue A (2008) Glass-transition behavior of Ni: Calculation, prediction, and experiment. J Appl Phys 104:123529–1–123529-5CrossRef
19.
Zurück zum Zitat Kim YW, Lin HM, Kelly TF (1989) Amorphous solidification of pure metals in submicron spheres. Acta Metall 37:247–255CrossRef Kim YW, Lin HM, Kelly TF (1989) Amorphous solidification of pure metals in submicron spheres. Acta Metall 37:247–255CrossRef
20.
Zurück zum Zitat Egami T (1997) Universal criterion for metallic glass formation. Mater Sci Eng, A 226–228:261–267CrossRef Egami T (1997) Universal criterion for metallic glass formation. Mater Sci Eng, A 226–228:261–267CrossRef
21.
Zurück zum Zitat Hobbs D, Hafner J, Spisak D (2003) Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys Rev B 68:014407CrossRef Hobbs D, Hafner J, Spisak D (2003) Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys Rev B 68:014407CrossRef
22.
Zurück zum Zitat Louzguine-Luzgin DV, Yavari AR, Vaughan G, Inoue A (2009) Clustered crystalline structures as glassy phase approximants. Intermetallics 17:477–480CrossRef Louzguine-Luzgin DV, Yavari AR, Vaughan G, Inoue A (2009) Clustered crystalline structures as glassy phase approximants. Intermetallics 17:477–480CrossRef
23.
Zurück zum Zitat Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125CrossRef Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125CrossRef
24.
Zurück zum Zitat Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512CrossRef Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512CrossRef
25.
Zurück zum Zitat Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non-Cryst Solids 355:355–360CrossRef Suryanarayana C, Seki I, Inoue A (2009) A critical analysis of the glass-forming ability of alloys. J Non-Cryst Solids 355:355–360CrossRef
26.
Zurück zum Zitat Suryanarayana C, Inoue A (2010) Bulk Metallic Glasses. CRC Press, Boca RatonCrossRef Suryanarayana C, Inoue A (2010) Bulk Metallic Glasses. CRC Press, Boca RatonCrossRef
27.
Zurück zum Zitat Louzguine-Luzgin DV, Setyawan AD, Kato H, Inoue A (2007) Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Phil Mag 87:1845–1854CrossRef Louzguine-Luzgin DV, Setyawan AD, Kato H, Inoue A (2007) Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Phil Mag 87:1845–1854CrossRef
28.
Zurück zum Zitat Park ES, Kim DH, Kim WT (2005) Parameter for glass forming ability of ternary alloy systems. Appl Phys Lett 86:061907CrossRef Park ES, Kim DH, Kim WT (2005) Parameter for glass forming ability of ternary alloy systems. Appl Phys Lett 86:061907CrossRef
29.
Zurück zum Zitat Senkov ON, Miracle DB, Mullens HM (2005) Topological criteria for amorphization based on a thermodynamic approach. J Appl Phys 97:103502CrossRef Senkov ON, Miracle DB, Mullens HM (2005) Topological criteria for amorphization based on a thermodynamic approach. J Appl Phys 97:103502CrossRef
30.
Zurück zum Zitat Louzguine-Luzgin DV, Miracle DB, Inoue A (2008) Intrinsic and Extrinsic Factors Influencing the Glass-Forming Ability of Alloys. Adv Eng Mater 10:1008–1015CrossRef Louzguine-Luzgin DV, Miracle DB, Inoue A (2008) Intrinsic and Extrinsic Factors Influencing the Glass-Forming Ability of Alloys. Adv Eng Mater 10:1008–1015CrossRef
31.
Zurück zum Zitat Louzguine-Luzgin DV, Inoue A, Botta WJ (2006) Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl Phys Lett 88:011911CrossRef Louzguine-Luzgin DV, Inoue A, Botta WJ (2006) Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl Phys Lett 88:011911CrossRef
32.
Zurück zum Zitat Louzguine DV, Louzguina LV, Inoue A (2002) Factors influencing glass formation in rapidly solidified Si, Ge–Ni and Si, Ge–Ni–Nd alloys. Appl Phys Lett 80:1556–1558CrossRef Louzguine DV, Louzguina LV, Inoue A (2002) Factors influencing glass formation in rapidly solidified Si, Ge–Ni and Si, Ge–Ni–Nd alloys. Appl Phys Lett 80:1556–1558CrossRef
33.
Zurück zum Zitat Miracle DB, Louzguine-Luzgin DV, Louzguina-Luzgina LV, Inoue A (2010) An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability. Int Mater Rev 55:218–256CrossRef Miracle DB, Louzguine-Luzgin DV, Louzguina-Luzgina LV, Inoue A (2010) An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability. Int Mater Rev 55:218–256CrossRef
34.
Zurück zum Zitat Battezzati L, Baricco M (1988) An analysis of volume effects in metallic glass formation. J Less-Common Met 145:31–38CrossRef Battezzati L, Baricco M (1988) An analysis of volume effects in metallic glass formation. J Less-Common Met 145:31–38CrossRef
35.
Zurück zum Zitat Yavari AR (1983) Small volume change on melting as a new criterion for easy formation of metallic glasses. Phys Lett A 95:165–168CrossRef Yavari AR (1983) Small volume change on melting as a new criterion for easy formation of metallic glasses. Phys Lett A 95:165–168CrossRef
36.
Zurück zum Zitat Bsenko L (1976) The crystal structure of Hf3Cu8 and Zr3Cu8. Acta Cryst B 32:2220–2224CrossRef Bsenko L (1976) The crystal structure of Hf3Cu8 and Zr3Cu8. Acta Cryst B 32:2220–2224CrossRef
37.
Zurück zum Zitat Fang T, Kennedy SJ, Quan L, Hicks TJ (1992) The structure and paramagnetism of Ni3Nb. J Phys-Condens Matter 4:2405–2409CrossRef Fang T, Kennedy SJ, Quan L, Hicks TJ (1992) The structure and paramagnetism of Ni3Nb. J Phys-Condens Matter 4:2405–2409CrossRef
38.
Zurück zum Zitat Zhou DW, Liu JS, Peng P, Chen L, Hu Y (2008) A first-principles study on the structural stability of Al2Ca, Al4Ca and Mg2Ca phases. J Mater Lett 62:206–210CrossRef Zhou DW, Liu JS, Peng P, Chen L, Hu Y (2008) A first-principles study on the structural stability of Al2Ca, Al4Ca and Mg2Ca phases. J Mater Lett 62:206–210CrossRef
39.
Zurück zum Zitat Glimois JL, Forey P, Feron J, Becle C (1981) Structural investigations of the pseudo-binary compounds Ni10−x Cu x Zr7. J Less-Common Met 78:45–50CrossRef Glimois JL, Forey P, Feron J, Becle C (1981) Structural investigations of the pseudo-binary compounds Ni10−x Cu x Zr7. J Less-Common Met 78:45–50CrossRef
40.
Zurück zum Zitat Gabathuler JP, White P, Parthé E (1975) Zr14Cu51 and Hf14Cu51 with GdAg3.6 structure type. Acta Cryst B 31:608–610CrossRef Gabathuler JP, White P, Parthé E (1975) Zr14Cu51 and Hf14Cu51 with GdAg3.6 structure type. Acta Cryst B 31:608–610CrossRef
41.
Zurück zum Zitat Mattern N, Schops A, Kuhn U, Acker J, Khvostikova O, Eckert J (2008) Structural behavior of CuxZr100−x metallic glass (x = 35 − 70). J Non-Cryst Solids 354:1054–1060CrossRef Mattern N, Schops A, Kuhn U, Acker J, Khvostikova O, Eckert J (2008) Structural behavior of CuxZr100−x metallic glass (x = 35 − 70). J Non-Cryst Solids 354:1054–1060CrossRef
42.
Zurück zum Zitat Gebhardt E, von Erdberg M, Lüty U (1964) Silver-Yttrium binary alloy phase diagram (based on 1964 Gebhardt E.). IMD Spec Rep Ser 10:303–314 Gebhardt E, von Erdberg M, Lüty U (1964) Silver-Yttrium binary alloy phase diagram (based on 1964 Gebhardt E.). IMD Spec Rep Ser 10:303–314
43.
Zurück zum Zitat Steeb S, Godel D, Löhr C (1968) On the structure of the compounds Ag3R.E. (R.E. = Y, La, Ce, Sm, Gd, Dy, Ho, Er). J Less-Common Met 15:137CrossRef Steeb S, Godel D, Löhr C (1968) On the structure of the compounds Ag3R.E. (R.E. = Y, La, Ce, Sm, Gd, Dy, Ho, Er). J Less-Common Met 15:137CrossRef
44.
Zurück zum Zitat McMasters OD, Gschneidner KA Jr, Venteicher RF (1970) Crystallography of the silver-rich rare-earth-silver intermetallic compounds. Acta Crystall B 26:1224–1229CrossRef McMasters OD, Gschneidner KA Jr, Venteicher RF (1970) Crystallography of the silver-rich rare-earth-silver intermetallic compounds. Acta Crystall B 26:1224–1229CrossRef
45.
Zurück zum Zitat Kadomatsu H, Kawanishi Y, Kurisu M, Tokunaga T, Fujiwara H (1988) Structural phase transitions in YCu 1−x M x (M = Ni, Ag and Ga). J Less Common Met 141:29–36CrossRef Kadomatsu H, Kawanishi Y, Kurisu M, Tokunaga T, Fujiwara H (1988) Structural phase transitions in YCu 1−x M x (M = Ni, Ag and Ga). J Less Common Met 141:29–36CrossRef
46.
Zurück zum Zitat Gratz E, Rotter M, Lindbaum A (1993) The influence of the crystal field on the anisotropic thermal expansion in TmCu2. J Phys 5:7955–7958 Gratz E, Rotter M, Lindbaum A (1993) The influence of the crystal field on the anisotropic thermal expansion in TmCu2. J Phys 5:7955–7958
47.
Zurück zum Zitat Buschow KHJ, van der Goot AS (1971) Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27:1085–1088CrossRef Buschow KHJ, van der Goot AS (1971) Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27:1085–1088CrossRef
48.
Zurück zum Zitat Miracle DB, Sanders WS, Senkov ON (2003) The influence of efficient atomic packing on the Constitution of metallic glasses. Philos Mag 83:2409–2428CrossRef Miracle DB, Sanders WS, Senkov ON (2003) The influence of efficient atomic packing on the Constitution of metallic glasses. Philos Mag 83:2409–2428CrossRef
49.
Zurück zum Zitat Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRef Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRef
50.
Zurück zum Zitat Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:026103–026103-3CrossRef Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:026103–026103-3CrossRef
51.
Zurück zum Zitat Zhang Y, Zhou YJ, Lin JP (2008) Solid solution phase formation rules for multicomponent alloys. Adv Eng Mater 10:534–538CrossRef Zhang Y, Zhou YJ, Lin JP (2008) Solid solution phase formation rules for multicomponent alloys. Adv Eng Mater 10:534–538CrossRef
52.
Zurück zum Zitat Fang SS, Xiao X, Lei X (2003) Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids 321:120–125CrossRef Fang SS, Xiao X, Lei X (2003) Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids 321:120–125CrossRef
53.
Zurück zum Zitat Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRef Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRef
54.
Zurück zum Zitat Guo S, Liu CT (2011) Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Mater Int 21:433–446 Guo S, Liu CT (2011) Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Mater Int 21:433–446
56.
Zurück zum Zitat Gale WF, Totemeier TC (2004) (eds.), Smithells metals reference book. 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-28–11-29 Gale WF, Totemeier TC (2004) (eds.), Smithells metals reference book. 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-28–11-29
57.
Zurück zum Zitat Ketov SV, Louzguina-Luzgina LV, Churyumov AYu, Solonin AN, Miracle DB, Louzguine-Luzgin DV, Inoue A (2012) Glass-formation and crystallization processes in Ag-Y-Cu alloys. J Non-Cryst Solids 358:1759–1763 Ketov SV, Louzguina-Luzgina LV, Churyumov AYu, Solonin AN, Miracle DB, Louzguine-Luzgin DV, Inoue A (2012) Glass-formation and crystallization processes in Ag-Y-Cu alloys. J Non-Cryst Solids 358:1759–1763
58.
Zurück zum Zitat Satta M, Rizzi P, Baricco M (2009) Glass-formation and hardness of Cu–Y alloys. J Alloys Compd 483:50–53CrossRef Satta M, Rizzi P, Baricco M (2009) Glass-formation and hardness of Cu–Y alloys. J Alloys Compd 483:50–53CrossRef
60.
Zurück zum Zitat Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-271–11-272 Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford, pp 11-271–11-272
61.
Zurück zum Zitat Miracle DB, Lord EA, Ranganathan S (2006) Candidate atomic cluster configurations in metallic glass structures. Mater Trans 47:1737–1742CrossRef Miracle DB, Lord EA, Ranganathan S (2006) Candidate atomic cluster configurations in metallic glass structures. Mater Trans 47:1737–1742CrossRef
62.
Zurück zum Zitat Goldschmidt V (1928) Uber atomabstande in metallen. Z Phys Chem 133:397–419 Goldschmidt V (1928) Uber atomabstande in metallen. Z Phys Chem 133:397–419
63.
Zurück zum Zitat Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553CrossRef Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553CrossRef
64.
Zurück zum Zitat Eiblert R, Redinger J, Neckel A (1987) Electronic structure, chemical bonding and spectral properties of the intermetallic compounds FeTi CoTi and NiTi. J Phys F 17:1533CrossRef Eiblert R, Redinger J, Neckel A (1987) Electronic structure, chemical bonding and spectral properties of the intermetallic compounds FeTi CoTi and NiTi. J Phys F 17:1533CrossRef
65.
Zurück zum Zitat Egami T (1996) Universal criterion for metallic glass formation. J Non-Cryst Solids 205–207:575–582CrossRef Egami T (1996) Universal criterion for metallic glass formation. J Non-Cryst Solids 205–207:575–582CrossRef
66.
Zurück zum Zitat Egami T, Ojha M, Nicholson DM, Louzguine-Luzgin DV, Chen N, Inoue A (2012) Glass formability and the Al-Au system. Philos Mag 92:655–665CrossRef Egami T, Ojha M, Nicholson DM, Louzguine-Luzgin DV, Chen N, Inoue A (2012) Glass formability and the Al-Au system. Philos Mag 92:655–665CrossRef
67.
Zurück zum Zitat Nurgayanov PP, Chudinov VG (2000) Atomic mechanisms of glass formation in metallic alloys, tendency to glass formation, and structural models. J Glass Phys Chem 26:335–341 Nurgayanov PP, Chudinov VG (2000) Atomic mechanisms of glass formation in metallic alloys, tendency to glass formation, and structural models. J Glass Phys Chem 26:335–341
68.
Zurück zum Zitat Louzguine-Luzgin DV, Belosludov R, Yavari AR, Georgarakis K, Vaughan G, Kawazoe Y, Egami T, Inoue A (2011) Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J Appl Phys 110:043519CrossRef Louzguine-Luzgin DV, Belosludov R, Yavari AR, Georgarakis K, Vaughan G, Kawazoe Y, Egami T, Inoue A (2011) Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J Appl Phys 110:043519CrossRef
69.
Zurück zum Zitat Blatter A, von Allmen M (1985) Reversible amorphization in laser-quenched titanium alloys. Phys Rev Lett 54:2103CrossRef Blatter A, von Allmen M (1985) Reversible amorphization in laser-quenched titanium alloys. Phys Rev Lett 54:2103CrossRef
70.
Zurück zum Zitat Yavari AR (2005) Solving the hume-rothery eutectic puzzle using miracle glasses. Nat Mater 4:1–2CrossRef Yavari AR (2005) Solving the hume-rothery eutectic puzzle using miracle glasses. Nat Mater 4:1–2CrossRef
71.
Zurück zum Zitat Sudavtsova VS, Kotova NV (2009) Thermodynamic properties of binary Si–Y (transition metal) alloys powder metallurgy and metal ceramics, 48: 582-587. Translated from Poroshkovaya Metallurgiya 48:115–123 Sudavtsova VS, Kotova NV (2009) Thermodynamic properties of binary Si–Y (transition metal) alloys powder metallurgy and metal ceramics, 48: 582-587. Translated from Poroshkovaya Metallurgiya 48:115–123
72.
Zurück zum Zitat Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198CrossRef Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198CrossRef
73.
Zurück zum Zitat Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford UK, pp 4–44 Burlington MA (2004) Smithells metals reference book. In: Gale WF, Totemeier TC (eds) ASM international metals reference book, 8th edn. Elsevier Butterworth-Heinemann Ltd., Oxford UK, pp 4–44
74.
Zurück zum Zitat Batsanov SS (1994) General and inorganic chemistry: metallic radii of nonmetals. Russ Chem Bull 43:199–201CrossRef Batsanov SS (1994) General and inorganic chemistry: metallic radii of nonmetals. Russ Chem Bull 43:199–201CrossRef
75.
Zurück zum Zitat Louzguine DV, Saito M, Waseda Y, Inoue A (1999) Structural study of amorphous Ge50Al40Cr10 alloy. J Phys Soc Jpn 68:2298–2303CrossRef Louzguine DV, Saito M, Waseda Y, Inoue A (1999) Structural study of amorphous Ge50Al40Cr10 alloy. J Phys Soc Jpn 68:2298–2303CrossRef
76.
Zurück zum Zitat Botta WJ, Pereira FS, Bolfarini C, Kiminami CS, de Oliveira MF (2008) Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philos Mag Lett 88:785–791CrossRef Botta WJ, Pereira FS, Bolfarini C, Kiminami CS, de Oliveira MF (2008) Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philos Mag Lett 88:785–791CrossRef
77.
Zurück zum Zitat Yao KF, Chen N (2008) Pd–Si binary bulk metallic glass. Sci China Ser G 51:414–420CrossRef Yao KF, Chen N (2008) Pd–Si binary bulk metallic glass. Sci China Ser G 51:414–420CrossRef
78.
Zurück zum Zitat Chen N, Yang HA, Caron A, Chen PC, Lin YC, Louzguine-Luzgin DV, Yao KF, Esashi M, Inoue A (2011) Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. J Mater Sci 46:2091–2096. doi:10.1007/s10853-010-5043-x CrossRef Chen N, Yang HA, Caron A, Chen PC, Lin YC, Louzguine-Luzgin DV, Yao KF, Esashi M, Inoue A (2011) Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. J Mater Sci 46:2091–2096. doi:10.​1007/​s10853-010-5043-x CrossRef
79.
Zurück zum Zitat Louzguine DV, Inoue A (1999) The influence of cooling rate on the formation of an amorphous phase in Si-based multicomponent alloys and its thermal stability. Mater Res Bull 34:1165–1172CrossRef Louzguine DV, Inoue A (1999) The influence of cooling rate on the formation of an amorphous phase in Si-based multicomponent alloys and its thermal stability. Mater Res Bull 34:1165–1172CrossRef
80.
Zurück zum Zitat Bergman C, Chastel R, Gilbert M, Castanet R, Mathieu JC (1980) Short-range order and thermodynamic behaviour of Pd-Si melts. J Phys Colloques 41:591–594CrossRef Bergman C, Chastel R, Gilbert M, Castanet R, Mathieu JC (1980) Short-range order and thermodynamic behaviour of Pd-Si melts. J Phys Colloques 41:591–594CrossRef
81.
Zurück zum Zitat Guo FQ, Poon SJ, Shiflet GJ (2004) CaAl-based bulk metallic glasses with high thermal stability. Appl Phys Lett 84:37–39CrossRef Guo FQ, Poon SJ, Shiflet GJ (2004) CaAl-based bulk metallic glasses with high thermal stability. Appl Phys Lett 84:37–39CrossRef
82.
Zurück zum Zitat Mendeleev D (1889) The periodic law of the chemical elements. J Chem Soc 55:634–656CrossRef Mendeleev D (1889) The periodic law of the chemical elements. J Chem Soc 55:634–656CrossRef
83.
Zurück zum Zitat Winter M (2008) WebElements: the periodic table on the WWW, vol 2007. The University of Sheffield and WebElements Ltd, Sheffield Winter M (2008) WebElements: the periodic table on the WWW, vol 2007. The University of Sheffield and WebElements Ltd, Sheffield
84.
Zurück zum Zitat Nagel SR, Taue J (1975) Nearly-free-electron approach to the theory of metallic glass alloys. Phys Rev Lett 35:380CrossRef Nagel SR, Taue J (1975) Nearly-free-electron approach to the theory of metallic glass alloys. Phys Rev Lett 35:380CrossRef
85.
Zurück zum Zitat Hiiussler P (1983) Interrelations between electronic and ionic structure in metallic glasses. Z Phys B Cond Matt 53:15 Hiiussler P (1983) Interrelations between electronic and ionic structure in metallic glasses. Z Phys B Cond Matt 53:15
86.
Zurück zum Zitat Louzguine DV, Inoue A (2002) Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J Mater Res 17:1014–1018CrossRef Louzguine DV, Inoue A (2002) Investigation of structure and properties of the Al–Y–Ni–Co–Cu metallic glasses. J Mater Res 17:1014–1018CrossRef
87.
Zurück zum Zitat Louzguine-Luzgin DV, Inoue A (2005) Structure and transformation behaviour of a rapidly solidified Al–Y–Ni–Co–Pd alloy. J Alloys Compd 399:78–85CrossRef Louzguine-Luzgin DV, Inoue A (2005) Structure and transformation behaviour of a rapidly solidified Al–Y–Ni–Co–Pd alloy. J Alloys Compd 399:78–85CrossRef
88.
Zurück zum Zitat Perepezko JH, Hildal K (2008) Metallic glass formation reactions and interfaces. Mater Sci and Eng B 148:171–178CrossRef Perepezko JH, Hildal K (2008) Metallic glass formation reactions and interfaces. Mater Sci and Eng B 148:171–178CrossRef
89.
Zurück zum Zitat Perepezko JH, Imhoff SD, Hebert RJ (2010) Nanostructure development during devitrification and deformation. J Alloys Compd 495:360–364CrossRef Perepezko JH, Imhoff SD, Hebert RJ (2010) Nanostructure development during devitrification and deformation. J Alloys Compd 495:360–364CrossRef
90.
Zurück zum Zitat Huang Z, Li J, Rao Q, Zhou Y (2008) Thermal stability and primary phase of Al–Ni(Cu)–La amorphous alloys. J Alloys Compd 463:328CrossRef Huang Z, Li J, Rao Q, Zhou Y (2008) Thermal stability and primary phase of Al–Ni(Cu)–La amorphous alloys. J Alloys Compd 463:328CrossRef
91.
Zurück zum Zitat Tkatch VI, Rassolov SG, Popov VV, Maksimov VV, Maslov VV, Nosenko VK, Aronin AS, Abrosimova GE, Rybchenko OG (2011) Complex crystallization mode of amorphous/nanocrystalline composite Al86Ni2Co5.8Gd5.7Si0.5. J Non-Cryst Solids 357:163–1628CrossRef Tkatch VI, Rassolov SG, Popov VV, Maksimov VV, Maslov VV, Nosenko VK, Aronin AS, Abrosimova GE, Rybchenko OG (2011) Complex crystallization mode of amorphous/nanocrystalline composite Al86Ni2Co5.8Gd5.7Si0.5. J Non-Cryst Solids 357:163–1628CrossRef
92.
Zurück zum Zitat Wang H, Carter EA (1993) Metal-metal bonding in Engel-Brewer intermetallics: “anomalous” charge transfer in zirconium-platinum (ZrPt3). J Am Chem Soc 115:2357–2362CrossRef Wang H, Carter EA (1993) Metal-metal bonding in Engel-Brewer intermetallics: “anomalous” charge transfer in zirconium-platinum (ZrPt3). J Am Chem Soc 115:2357–2362CrossRef
93.
Zurück zum Zitat Louzguine-Luzgin DV (2014) Vitrification and devitrification processes in metallic glasses. J Alloy Compd 586:S2–S8CrossRef Louzguine-Luzgin DV (2014) Vitrification and devitrification processes in metallic glasses. J Alloy Compd 586:S2–S8CrossRef
94.
Zurück zum Zitat Ojovan MI (2013) Ordering and structural changes at the glass–liquid transition. J Non-Cryst Solids 382:79–86CrossRef Ojovan MI (2013) Ordering and structural changes at the glass–liquid transition. J Non-Cryst Solids 382:79–86CrossRef
95.
Zurück zum Zitat Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic alloys. Phys Rev B 76:104202CrossRef Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic alloys. Phys Rev B 76:104202CrossRef
96.
Zurück zum Zitat Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Cryst Solids 7:337–348CrossRef Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Cryst Solids 7:337–348CrossRef
Metadaten
Titel
Role of different factors in the glass-forming ability of binary alloys
verfasst von
D. V. Louzguine-Luzgin
N. Chen
A. Yu. Churymov
L. V. Louzguina-Luzgina
V. I. Polkin
L. Battezzati
A. R. Yavari
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8741-y

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Science 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.