Skip to main content
Erschienen in: Journal of Materials Science 5/2015

01.03.2015 | Original Paper

BiFeO3–CoFe2O4–PbTiO3 composites: structural, multiferroic, and optical characteristics

verfasst von: Nidhi Adhlakha, K. L. Yadav, Ripandeep Singh

Erschienen in: Journal of Materials Science | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-phase magnetoelectric composites (1 − x)(0.7BiFeO3–0.3CoFe2O4)–xPbTiO3 (or equivalently written as (1 − x)(0.7BFO–0.3CFO)–xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45, and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic, and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy images are taken for microstructural analysis and grain size determination. Transmission electron microscopy analysis of 0.3CFO–0.7BFO reveals the average particle size to be lying in the window of 10–15 nm. The temperature-dependent dielectric constant at various frequencies (1, 10, 50, 100, and 500 kHz) has been studied, and the dielectric study reveals the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. Room temperature ferromagnetic behavior of composites is confirmed through the observation of magnetization versus magnetic field (MH) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of dependence of the dielectric constant on magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field-induced dielectric constant can also be expressed as Δɛ r ∼ γM 2, and the value of γ is found to be ~1.08 × 10−2 (emu/g)−2 for composite with x = 0.40. Fourier transformed infrared spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu W, Chen Y, Yuan H, Li G, Qiao Y, Qin Y, Feng S (2011) Structure, magnetic, and ferroelectric properties of Bi1-x Gd x FeO3 nanoparticles. J Phys Chem C 115:8869–8875CrossRef Hu W, Chen Y, Yuan H, Li G, Qiao Y, Qin Y, Feng S (2011) Structure, magnetic, and ferroelectric properties of Bi1-x Gd x FeO3 nanoparticles. J Phys Chem C 115:8869–8875CrossRef
2.
Zurück zum Zitat Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765CrossRef Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765CrossRef
3.
Zurück zum Zitat Yang H, Ke Q, Si H, Chen J (2012) 0.7BiFeO3-0.3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties. J Appl Phys 111:024104–024107CrossRef Yang H, Ke Q, Si H, Chen J (2012) 0.7BiFeO3-0.3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties. J Appl Phys 111:024104–024107CrossRef
4.
Zurück zum Zitat Mandal SK, Rakshit T, Ray SK, Mishra SK, Krishna PSE, Chandra A (2013) Nanostructures of Sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties. J Phys: Condens Matter 25:055303–055312 Mandal SK, Rakshit T, Ray SK, Mishra SK, Krishna PSE, Chandra A (2013) Nanostructures of Sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties. J Phys: Condens Matter 25:055303–055312
5.
Zurück zum Zitat Bi L, Taussig AR, Kim HS, Wang L, Dionne GF, Bono D, Persson K, Ceder G, Ross CA (2008) Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys Rev B 78:104106–104115CrossRef Bi L, Taussig AR, Kim HS, Wang L, Dionne GF, Bono D, Persson K, Ceder G, Ross CA (2008) Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys Rev B 78:104106–104115CrossRef
6.
Zurück zum Zitat Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, Xu X, Musfeldt JL (2008) Photoconductivity in BiFeO3 thin films. Appl Phys Lett 92:091905–091907CrossRef Basu SR, Martin LW, Chu YH, Gajek M, Ramesh R, Rai RC, Xu X, Musfeldt JL (2008) Photoconductivity in BiFeO3 thin films. Appl Phys Lett 92:091905–091907CrossRef
7.
Zurück zum Zitat Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB, Pan XQ (2006) Substitution induced phase transition and enhanced multiferroic properties of Bi1-x La x O3 ceramics. Appl Phys Lett 88:162901–162903CrossRef Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB, Pan XQ (2006) Substitution induced phase transition and enhanced multiferroic properties of Bi1-x La x O3 ceramics. Appl Phys Lett 88:162901–162903CrossRef
8.
Zurück zum Zitat Pradhan SK, Das J, Rout PP, Mohanta VR, Das SK, Samantray S, Sahu DR, Huang JL, Verma S, Roul BK (2010) Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3. J Phys Chem Solids 71:1557–1564CrossRef Pradhan SK, Das J, Rout PP, Mohanta VR, Das SK, Samantray S, Sahu DR, Huang JL, Verma S, Roul BK (2010) Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3. J Phys Chem Solids 71:1557–1564CrossRef
9.
Zurück zum Zitat Wen Z, Lv Y, Wuand D, Li A (2011) Polarization fatigue of Pr and Mn co-substituted BiFeO3 thin films. Appl Phys Lett 99:012903–012905CrossRef Wen Z, Lv Y, Wuand D, Li A (2011) Polarization fatigue of Pr and Mn co-substituted BiFeO3 thin films. Appl Phys Lett 99:012903–012905CrossRef
10.
Zurück zum Zitat Liu XH, Xu Z, Wei XY, Dai ZH, Yao X (2010) Ferroelectric, ferromagnetic, and magnetoelectric characteristics of 0.9(0.7BiFeO3–0.3BaTiO3)–0.1CoFe2O4 ceramic composite. J Am Ceram Soc 93:2975–2977CrossRef Liu XH, Xu Z, Wei XY, Dai ZH, Yao X (2010) Ferroelectric, ferromagnetic, and magnetoelectric characteristics of 0.9(0.7BiFeO3–0.3BaTiO3)–0.1CoFe2O4 ceramic composite. J Am Ceram Soc 93:2975–2977CrossRef
11.
Zurück zum Zitat Kanamadi CM, Kim JS, Yang HK, Moon BK, Choi BC, Jeong JH (2009) Synthesis and characterization of CoFe2O4–Ba0.9Sr0.1TiO3 magnetoelectric composites with dielectric and magnetic properties. Appl Phys A 97:575–580CrossRef Kanamadi CM, Kim JS, Yang HK, Moon BK, Choi BC, Jeong JH (2009) Synthesis and characterization of CoFe2O4–Ba0.9Sr0.1TiO3 magnetoelectric composites with dielectric and magnetic properties. Appl Phys A 97:575–580CrossRef
12.
Zurück zum Zitat Liu XM, Fu SY, Huang CJ (2005) Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater Sci Eng B 121:255–260CrossRef Liu XM, Fu SY, Huang CJ (2005) Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater Sci Eng B 121:255–260CrossRef
13.
Zurück zum Zitat Mishra KK, Satya AT, Bharathi A, Sivasubramanian V, Murthy VRK, Arora AK (2011) Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J Appl Phys 110:123529–123539CrossRef Mishra KK, Satya AT, Bharathi A, Sivasubramanian V, Murthy VRK, Arora AK (2011) Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J Appl Phys 110:123529–123539CrossRef
14.
Zurück zum Zitat Wang N, Cheng J, Pyatakov A, Zvezdin AK, Li JF, Cross LE, Viehland D (2005) Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phys Rev B 72:104434–104438CrossRef Wang N, Cheng J, Pyatakov A, Zvezdin AK, Li JF, Cross LE, Viehland D (2005) Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phys Rev B 72:104434–104438CrossRef
15.
Zurück zum Zitat Gheorghiu FP, Lanculescu A, Postolache P, Lupu N, Dobromir M, Luca D, Mitoseriu L (2010) Preparation and properties of (1-x)BiFeO3-xBaTiO3 multiferroic ceramics. J Alloys Compd. 506:862–867CrossRef Gheorghiu FP, Lanculescu A, Postolache P, Lupu N, Dobromir M, Luca D, Mitoseriu L (2010) Preparation and properties of (1-x)BiFeO3-xBaTiO3 multiferroic ceramics. J Alloys Compd. 506:862–867CrossRef
16.
Zurück zum Zitat Kumar MM, Srivinas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87:855–862CrossRef Kumar MM, Srivinas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87:855–862CrossRef
17.
Zurück zum Zitat Ma ZZ, Tian ZM, Li JQ, Wang CH, Huo SX, Duan HN, Yuan SL (2011) Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution. Solid State Sci 13:2196–2200CrossRef Ma ZZ, Tian ZM, Li JQ, Wang CH, Huo SX, Duan HN, Yuan SL (2011) Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution. Solid State Sci 13:2196–2200CrossRef
18.
Zurück zum Zitat Chen J, Qi Y, Shi G, Yan X, Yu S, Cheng J (2008) Diffused phase transition and multiferroic properties of 0.57(Bi1-x La x )FeO3-0.43PbTiO3 crystalline solutions. J Appl Phys 104:064124–064128CrossRef Chen J, Qi Y, Shi G, Yan X, Yu S, Cheng J (2008) Diffused phase transition and multiferroic properties of 0.57(Bi1-x La x )FeO3-0.43PbTiO3 crystalline solutions. J Appl Phys 104:064124–064128CrossRef
19.
Zurück zum Zitat Zhuang J, Chen L, Ren W, Ye ZG (2013) Synthesis, structure and dielectric properties of (1-x) [0.9BiFeO3–0.1DyFeO3]–xPbTiO3 pseudo-binary ceramics. Ceram Int 39:S207–S211CrossRef Zhuang J, Chen L, Ren W, Ye ZG (2013) Synthesis, structure and dielectric properties of (1-x) [0.9BiFeO3–0.1DyFeO3]–xPbTiO3 pseudo-binary ceramics. Ceram Int 39:S207–S211CrossRef
20.
Zurück zum Zitat Kim JS, Cheon C, Choi YN, Jang PW (2003) Ferroelectric and ferromagnetic properties of BiFeO3-PrFeO3-PbTiO3 solid solutions. J Appl Phys 93:9263–9270CrossRef Kim JS, Cheon C, Choi YN, Jang PW (2003) Ferroelectric and ferromagnetic properties of BiFeO3-PrFeO3-PbTiO3 solid solutions. J Appl Phys 93:9263–9270CrossRef
21.
Zurück zum Zitat Yang H, Ke Q, Si H, Chen J (2012) 0.7BiFeO3-0.3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties. J Appl Phys 111:024104–024107CrossRef Yang H, Ke Q, Si H, Chen J (2012) 0.7BiFeO3-0.3BaTiO3-Y3Fe5O12 composites with simultaneously improved electrical and magnetic properties. J Appl Phys 111:024104–024107CrossRef
22.
Zurück zum Zitat Kumar L, Kumar P, Narayan A, Kar M (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Lett 3:8–19CrossRef Kumar L, Kumar P, Narayan A, Kar M (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Lett 3:8–19CrossRef
23.
Zurück zum Zitat Adhlakha N, Yadav KL, Singh R (2013) Implications of La and Y codoping on structural, multiferroic, magnetoelectric and optical Properties of BiFeO3. Sci Adv Mater 5:947–959CrossRef Adhlakha N, Yadav KL, Singh R (2013) Implications of La and Y codoping on structural, multiferroic, magnetoelectric and optical Properties of BiFeO3. Sci Adv Mater 5:947–959CrossRef
24.
Zurück zum Zitat Mazario E, Herrasti P, Morales MP, Menendez N (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708–355713CrossRef Mazario E, Herrasti P, Morales MP, Menendez N (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708–355713CrossRef
25.
Zurück zum Zitat Sahu N, Kar M, Panigrahi S (2010) Rietveld refinement, microstructure and electrical properties of PbTiO3 ceramic materials. Arch Phys Res 1:75–87 Sahu N, Kar M, Panigrahi S (2010) Rietveld refinement, microstructure and electrical properties of PbTiO3 ceramic materials. Arch Phys Res 1:75–87
26.
Zurück zum Zitat Bammannavar BK, Naik LR, Chougule BK (2008) Studies on dielectric and magnetic properties of (x)Ni0.2Co0.8Fe2O4 + (1 − x) barium lead zirconate titanate magnetoelectric composites. J Appl Phys 104:064123–064130CrossRef Bammannavar BK, Naik LR, Chougule BK (2008) Studies on dielectric and magnetic properties of (x)Ni0.2Co0.8Fe2O4 + (1 − x) barium lead zirconate titanate magnetoelectric composites. J Appl Phys 104:064123–064130CrossRef
27.
Zurück zum Zitat Fawzi AS (2011) Effect of sintering temperature on structural, electrical, magnetic hysteresis and magnetoelectric effect on (x)Ni0.7Zn0.3Fe2O4 + (1-x)PLZT composite by co-precipitation method. Adv Appl Sci Res 2:577–589 Fawzi AS (2011) Effect of sintering temperature on structural, electrical, magnetic hysteresis and magnetoelectric effect on (x)Ni0.7Zn0.3Fe2O4 + (1-x)PLZT composite by co-precipitation method. Adv Appl Sci Res 2:577–589
28.
Zurück zum Zitat Zhang HF, Or SW, Chan HLW (2008) Multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb(Zr0.53Ti0.47)O3 ceramic composites. J Appl Phys 104:104109–104114CrossRef Zhang HF, Or SW, Chan HLW (2008) Multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb(Zr0.53Ti0.47)O3 ceramic composites. J Appl Phys 104:104109–104114CrossRef
29.
Zurück zum Zitat Zhang S, Priya S, Shrout TR, Randall CA (2003) Low frequency polarization behavior of xBiScO3–yBiGaO3–(1-x-y)PbTiO3 piezocrystals. J Appl Phys 93:2880–2883CrossRef Zhang S, Priya S, Shrout TR, Randall CA (2003) Low frequency polarization behavior of xBiScO3yBiGaO3–(1-x-y)PbTiO3 piezocrystals. J Appl Phys 93:2880–2883CrossRef
30.
Zurück zum Zitat Islam RA, Priya S (2008) Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites. J Mater Sci 43:3560–3568. doi:10.1007/s10853-008-2562-9 CrossRef Islam RA, Priya S (2008) Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites. J Mater Sci 43:3560–3568. doi:10.​1007/​s10853-008-2562-9 CrossRef
31.
Zurück zum Zitat Chandarak S, Ngamjarurojana A, Srilimsak S, Laoratanakul P, Rujirawat S, Yimnirum R (2011) Dielectric properties of BaTiO3-modified BiFeO3 ceramics. Ferroelectrics 410:75–81CrossRef Chandarak S, Ngamjarurojana A, Srilimsak S, Laoratanakul P, Rujirawat S, Yimnirum R (2011) Dielectric properties of BaTiO3-modified BiFeO3 ceramics. Ferroelectrics 410:75–81CrossRef
32.
Zurück zum Zitat Zhang J, Wang L, Bian L, Xu J, Chang A (2014) Structural, dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTi0.9Zr0.1O3 ceramics. Ceramics Int. 40:5173–5179CrossRef Zhang J, Wang L, Bian L, Xu J, Chang A (2014) Structural, dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTi0.9Zr0.1O3 ceramics. Ceramics Int. 40:5173–5179CrossRef
33.
Zurück zum Zitat Zhang X, Sui Y, Wang X, Wang Y, Wang Z (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloys Compd 507:157–161CrossRef Zhang X, Sui Y, Wang X, Wang Y, Wang Z (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloys Compd 507:157–161CrossRef
34.
Zurück zum Zitat Kambale RC, Shaikh PA, Bhosale CH, Rajpure KY, Kolekar YD (2010) Studies on magnetic, dielectric and magnetoelectric behavior of (x)NiFe1.9Mn0.1O4 and (1 − x)BaZr0.08Ti0.92O3 magnetoelectric composites. J. Alloys Compd. 489:310–315CrossRef Kambale RC, Shaikh PA, Bhosale CH, Rajpure KY, Kolekar YD (2010) Studies on magnetic, dielectric and magnetoelectric behavior of (x)NiFe1.9Mn0.1O4 and (1 − x)BaZr0.08Ti0.92O3 magnetoelectric composites. J. Alloys Compd. 489:310–315CrossRef
35.
Zurück zum Zitat Sone K, Sekiguchi S, Naganuma H, Miyazaki T, Nakajima T, Okamura S (2012) Magnetic properties of CoFe2O4 nanoparticles distributed in a multiferroic BiFeO3 matrix. J Appl Phys 111:124101–124105CrossRef Sone K, Sekiguchi S, Naganuma H, Miyazaki T, Nakajima T, Okamura S (2012) Magnetic properties of CoFe2O4 nanoparticles distributed in a multiferroic BiFeO3 matrix. J Appl Phys 111:124101–124105CrossRef
36.
Zurück zum Zitat Mishra KK, Satya AT, Bharathi A, Sivasubramanian V, Murthy VRK, Arora AK (2011) Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J Appl Phys 110:123529–123539CrossRef Mishra KK, Satya AT, Bharathi A, Sivasubramanian V, Murthy VRK, Arora AK (2011) Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3-PbTiO3. J Appl Phys 110:123529–123539CrossRef
37.
Zurück zum Zitat Gupta A, Chatterjee R (2009) Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3–CoFe2O4–poly(vinylidene-fluoride) composite. J Appl Phys 106:024110–024115CrossRef Gupta A, Chatterjee R (2009) Magnetic, dielectric, magnetoelectric, and microstructural studies demonstrating improved magnetoelectric sensitivity in three-phase BaTiO3–CoFe2O4–poly(vinylidene-fluoride) composite. J Appl Phys 106:024110–024115CrossRef
38.
Zurück zum Zitat Kumar L, Kar M (2012) Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−x La x O4). Ceramic Int 38:4771–4782CrossRef Kumar L, Kar M (2012) Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−x La x O4). Ceramic Int 38:4771–4782CrossRef
39.
Zurück zum Zitat Tang X, Dai J, Zhu X, Song W, Sun Y (2011) Magnetic annealing effects on multiferroic BiFeO3/CoFe2O4 bilayered films. J Alloys Compd 509:4748–4753CrossRef Tang X, Dai J, Zhu X, Song W, Sun Y (2011) Magnetic annealing effects on multiferroic BiFeO3/CoFe2O4 bilayered films. J Alloys Compd 509:4748–4753CrossRef
40.
Zurück zum Zitat Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Magnetoelectricity at room temperature in the Bi0.9-x Tb x La0.1FeO3 system. Phys Rev B 69:212102–212104CrossRef Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Magnetoelectricity at room temperature in the Bi0.9-x Tb x La0.1FeO3 system. Phys Rev B 69:212102–212104CrossRef
41.
Zurück zum Zitat Zhou JP, Zhang YX, Lin Q, Liu P (2014) Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Mater 76:355–370CrossRef Zhou JP, Zhang YX, Lin Q, Liu P (2014) Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Mater 76:355–370CrossRef
42.
Zurück zum Zitat Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B 67:180401–180404CrossRef Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B 67:180401–180404CrossRef
43.
Zurück zum Zitat Cui Z, Sun D (2011) Adv Mater Res 533:261 Cui Z, Sun D (2011) Adv Mater Res 533:261
44.
Zurück zum Zitat Silva VAJ, Andrade PL, Bustamante A, Los LD, Valladares S, Mejia M, Souza LA, Cavalcanti KPS, Silva MPC, Aguiar JA (2014) Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity. Hyperfine Interact 224:227–238CrossRef Silva VAJ, Andrade PL, Bustamante A, Los LD, Valladares S, Mejia M, Souza LA, Cavalcanti KPS, Silva MPC, Aguiar JA (2014) Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity. Hyperfine Interact 224:227–238CrossRef
45.
Zurück zum Zitat Ahmad A, Bedard P, Wheat TA, Kuriakose AK, McDonald AG (1991) Surface area, XRD, and FTIR spectral characterization of chemically derived PbTiO3. J Solid State Chem 93:220–227CrossRef Ahmad A, Bedard P, Wheat TA, Kuriakose AK, McDonald AG (1991) Surface area, XRD, and FTIR spectral characterization of chemically derived PbTiO3. J Solid State Chem 93:220–227CrossRef
46.
Zurück zum Zitat Sengodan R, Chandar Shekar B, Sathish S (2012) Synthesis and characterization of BaTiO3 nano particles by organic precursor method. IJMER 2:043–045CrossRef Sengodan R, Chandar Shekar B, Sathish S (2012) Synthesis and characterization of BaTiO3 nano particles by organic precursor method. IJMER 2:043–045CrossRef
47.
Zurück zum Zitat Bayal N, Jeevanandam P (2012) Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J Alloys Compd 537:232–241CrossRef Bayal N, Jeevanandam P (2012) Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J Alloys Compd 537:232–241CrossRef
Metadaten
Titel
BiFeO3–CoFe2O4–PbTiO3 composites: structural, multiferroic, and optical characteristics
verfasst von
Nidhi Adhlakha
K. L. Yadav
Ripandeep Singh
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8769-z

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Science 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.