Skip to main content
Erschienen in: Journal of Materials Science 6/2016

01.03.2016 | Original Paper

Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility

verfasst von: Gang Li, Fei Li, Zhaozhu Zheng, Tingting Luo, Jian Liu, Jianbing Wu, Xiaoqin Wang, David L. Kaplan

Erschienen in: Journal of Materials Science | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanical reinforcement of silk membranes by embedding silk microfibers was studied. Silk microfibers of 10–600 μm long were prepared by hydrolyzing degummed silk fibers in alkali solution. The silk microfibers were mixed with silk fibroin solution (continuous phase) at various ratios to fabricate silk microfiber-reinforced composite scaffolds (SMCSs). The morphology, mechanical properties, structural characteristics, biodegradation, and cytotoxicity of the composites were investigated. Silk microfiber-reinforced membranes with 1 wt% of microfibers displayed the most homogeneous distribution of microfibers in the membrane matrix. The tensile strength and elongation at break were 10.5 ± 2.7 MPa and 56.7 ± 7.8 %, respectively, comparable to human meniscus tissue. The presence of silk microfibers did not significantly impact the secondary structure and crystallization of SMCSs. Proteolytic degradation in vitro using protease XIV showed that the 1 % silk microfiber-reinforced membranes lost 90 % weight after 5 days, a longer time frame than plain silk membrane controls. The viability of human fibroblasts (Hs 865.Sk) on the SMCSs demonstrated no cytotoxicity. SMCSs may be useful as biomaterial systems as tissue substitutes where mechanical strength is critical for functional performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gloria A, Ronca D, Russo T et al (2010) Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J Appl Biomater Biomech 9:151–163 Gloria A, Ronca D, Russo T et al (2010) Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J Appl Biomater Biomech 9:151–163
2.
Zurück zum Zitat Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774CrossRef Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774CrossRef
3.
Zurück zum Zitat Li J, Li Y, Zhang J et al (2015) Nano polypeptide particles reinforced polymer composite fibers. ACS Appl Mater Interfaces 7:3871–3876CrossRef Li J, Li Y, Zhang J et al (2015) Nano polypeptide particles reinforced polymer composite fibers. ACS Appl Mater Interfaces 7:3871–3876CrossRef
4.
Zurück zum Zitat Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177CrossRef Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177CrossRef
5.
Zurück zum Zitat Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660CrossRef Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660CrossRef
6.
Zurück zum Zitat Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci 33:43–52CrossRef Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci 33:43–52CrossRef
7.
Zurück zum Zitat Kharlampieva E, Kozlovskaya V, Gunawidjaja R et al (2010) Flexible silk-inorganic nanocomposites: from transparent to highly reflective. Adv Funct Mater 20:840–846CrossRef Kharlampieva E, Kozlovskaya V, Gunawidjaja R et al (2010) Flexible silk-inorganic nanocomposites: from transparent to highly reflective. Adv Funct Mater 20:840–846CrossRef
8.
Zurück zum Zitat Rizvi GM, Semeralul H (2008) Glass-fiber-reinforced wood/plastic composites. J Vinyl Addit Technol 14:39–42CrossRef Rizvi GM, Semeralul H (2008) Glass-fiber-reinforced wood/plastic composites. J Vinyl Addit Technol 14:39–42CrossRef
9.
Zurück zum Zitat Mandal BB, Park S-H, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639–651CrossRef Mandal BB, Park S-H, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639–651CrossRef
10.
Zurück zum Zitat Zhao Z, Li Y, Zhang Y et al (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125CrossRef Zhao Z, Li Y, Zhang Y et al (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125CrossRef
11.
Zurück zum Zitat Lu Q, Zhang X, Hu X, Kaplan DL (2010) Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci 10:289–298CrossRef Lu Q, Zhang X, Hu X, Kaplan DL (2010) Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci 10:289–298CrossRef
12.
Zurück zum Zitat Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7:643–655CrossRef Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7:643–655CrossRef
14.
Zurück zum Zitat Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C (2014) Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Appl Mater Interfaces 6:13782–13789CrossRef Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C (2014) Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Appl Mater Interfaces 6:13782–13789CrossRef
15.
Zurück zum Zitat Tungjitpornkull S, Chaochanchaikul K, Sombatsompop N (2007) Mechanical characterization of E-chopped strand glass fiber reinforced wood/PVC composites. J Thermoplast Compos Mater 20:535–550CrossRef Tungjitpornkull S, Chaochanchaikul K, Sombatsompop N (2007) Mechanical characterization of E-chopped strand glass fiber reinforced wood/PVC composites. J Thermoplast Compos Mater 20:535–550CrossRef
16.
Zurück zum Zitat Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643CrossRef Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643CrossRef
17.
Zurück zum Zitat Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061CrossRef Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061CrossRef
18.
Zurück zum Zitat Yuan Q, Yao J, Chen X, Huang L, Shao Z (2010) The preparation of high performance silk fiber/fibroin composite. Polymer 51:4843–4849CrossRef Yuan Q, Yao J, Chen X, Huang L, Shao Z (2010) The preparation of high performance silk fiber/fibroin composite. Polymer 51:4843–4849CrossRef
19.
Zurück zum Zitat Pendleton M (2006) Descriptions of melissopalynological methods involving centrifugation should include data for calculating relative centrifugal force (RCF) or should express data in units of RCF or gravities (g). Grana 45:71–72CrossRef Pendleton M (2006) Descriptions of melissopalynological methods involving centrifugation should include data for calculating relative centrifugal force (RCF) or should express data in units of RCF or gravities (g). Grana 45:71–72CrossRef
20.
Zurück zum Zitat Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704CrossRef Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704CrossRef
21.
Zurück zum Zitat Yodmuang S, McNamara SL, Nover AB et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36CrossRef Yodmuang S, McNamara SL, Nover AB et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36CrossRef
22.
Zurück zum Zitat Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007CrossRef Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007CrossRef
23.
Zurück zum Zitat Li G, Chen Y, Hu J et al (2013) A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 34:9451–9461CrossRef Li G, Chen Y, Hu J et al (2013) A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 34:9451–9461CrossRef
24.
Zurück zum Zitat Eli N, Oragui E, Khan W (2011) Advances in meniscal tissue engineering. Ortop Traumatol Rehabil 13:319–326CrossRef Eli N, Oragui E, Khan W (2011) Advances in meniscal tissue engineering. Ortop Traumatol Rehabil 13:319–326CrossRef
25.
Zurück zum Zitat Li G, Liu J, Zheng Z, Wang X, Kaplan DL (2015) Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers. Macromol Biosci 15:1125–1133CrossRef Li G, Liu J, Zheng Z, Wang X, Kaplan DL (2015) Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers. Macromol Biosci 15:1125–1133CrossRef
26.
Zurück zum Zitat Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B 95:84–90CrossRef Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B 95:84–90CrossRef
27.
Zurück zum Zitat Lu S, Wang X, Lu Q et al (2009) Insoluble and flexible silk films containing glycerol. Biomacromolecules 11:143–150CrossRef Lu S, Wang X, Lu Q et al (2009) Insoluble and flexible silk films containing glycerol. Biomacromolecules 11:143–150CrossRef
28.
Zurück zum Zitat Li C, Luo T, Zheng Z, Murphy AR, Wang X, Kaplan DL (2015) Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater 11:222–232CrossRef Li C, Luo T, Zheng Z, Murphy AR, Wang X, Kaplan DL (2015) Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater 11:222–232CrossRef
29.
Zurück zum Zitat Jin HJ, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247CrossRef Jin HJ, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247CrossRef
30.
Zurück zum Zitat Hu X, Shmelev K, Sun L et al (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696CrossRef Hu X, Shmelev K, Sun L et al (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696CrossRef
31.
Zurück zum Zitat Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28:411–422CrossRef Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28:411–422CrossRef
32.
Zurück zum Zitat Li G, Li Y, Lan P et al (2014) Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A 102:982–990CrossRef Li G, Li Y, Lan P et al (2014) Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A 102:982–990CrossRef
33.
Zurück zum Zitat Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41:3939–3948CrossRef Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41:3939–3948CrossRef
34.
Zurück zum Zitat Yang G, Zhang L, Cao X, Liu Y (2002) Structure and microporous formation of cellulose/silk fibroin blend membranes: part II. Effect of post-treatment by alkali. J Membr Sci 210:379–387CrossRef Yang G, Zhang L, Cao X, Liu Y (2002) Structure and microporous formation of cellulose/silk fibroin blend membranes: part II. Effect of post-treatment by alkali. J Membr Sci 210:379–387CrossRef
35.
Zurück zum Zitat Taddei P, Arai T, Boschi A, Monti P, Tsukada M, Freddi G (2006) In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin. Biomacromolecules 7:259–267CrossRef Taddei P, Arai T, Boschi A, Monti P, Tsukada M, Freddi G (2006) In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin. Biomacromolecules 7:259–267CrossRef
36.
Zurück zum Zitat Hu X, Lu Q, Kaplan DL, Cebe P (2009) Microphase separation controlled β-sheet crystallization kinetics in fibrous proteins. Macromolecules 42:2079–2087CrossRef Hu X, Lu Q, Kaplan DL, Cebe P (2009) Microphase separation controlled β-sheet crystallization kinetics in fibrous proteins. Macromolecules 42:2079–2087CrossRef
37.
Zurück zum Zitat Asha S, Somashekar R, Sanjeev G (2012) Quantification of degradation and surface morphology of NB7 silk fibers irradiated by 8 MeV electron beam using XRD and SEM techniques. Fiber Polym 13:224–230CrossRef Asha S, Somashekar R, Sanjeev G (2012) Quantification of degradation and surface morphology of NB7 silk fibers irradiated by 8 MeV electron beam using XRD and SEM techniques. Fiber Polym 13:224–230CrossRef
38.
Zurück zum Zitat Schäfer-Nolte F, Hennecke K, Reimers K et al (2014) Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg 259:781–792CrossRef Schäfer-Nolte F, Hennecke K, Reimers K et al (2014) Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg 259:781–792CrossRef
39.
Zurück zum Zitat Xie RJ, Zhang M (2013) Effect of glycerol on structure and properties of silk fibroin/pearl powder blend films. Adv Mater Res 796:126–131CrossRef Xie RJ, Zhang M (2013) Effect of glycerol on structure and properties of silk fibroin/pearl powder blend films. Adv Mater Res 796:126–131CrossRef
40.
Zurück zum Zitat Li G, Li Y, Chen G et al (2015) Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 4:1134–1151CrossRef Li G, Li Y, Chen G et al (2015) Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 4:1134–1151CrossRef
Metadaten
Titel
Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility
verfasst von
Gang Li
Fei Li
Zhaozhu Zheng
Tingting Luo
Jian Liu
Jianbing Wu
Xiaoqin Wang
David L. Kaplan
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9613-9

Weitere Artikel der Ausgabe 6/2016

Journal of Materials Science 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.