Skip to main content
Erschienen in: Journal of Materials Science 6/2017

02.12.2016 | Original Paper

The mechanical properties and delamination of carbon fiber-reinforced polymer laminates modified with carbon aerogel

verfasst von: Tsung-Han Hsieh, Yau-Shian Huang

Erschienen in: Journal of Materials Science | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon aerogels have excellent potential to act as reinforcements for improving the material properties of polymer-based composites because of their porous nanostructures and large surface areas. However, the addition of carbon aerogels to polymer-based composites has effects on the material properties of the final composites, and those effects are not clear. In this study, an epoxy matrix was modified with carbon aerogel, and this modified matrix was then used to manufacture carbon fiber-reinforced polymer (CFRP) laminates. The effects of the addition of the carbon aerogel to the laminates on the mechanical properties and delamination resistance were investigated. The modulus and strength of the laminates were slightly increased by the addition of the aerogel to the composite laminates. The addition of the aerogel to the laminates led to an appreciable improvement in the interfacial property and adhesion between the fibers and matrix, and consequently, the delamination fracture energy was increased. The Mode I delamination fracture energy was measured to be 265 J m−2 for the laminate with the unmodified matrix, whereas that of the laminate with 0.1 wt% aerogel was 346 J m−2. The delamination fracture energy caused by Mode II loading was increased from 655 J m−2 for the unmodified laminate to 1088 J m−2 for laminate modified with 0.5 wt% aerogel. Fractographic observation showed significant differences in the fracture surface morphology between aerogel-modified and unmodified CFRP laminate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ram A (1997) Fundamentals of polymer engineering. Plenum Press, New YorkCrossRef Ram A (1997) Fundamentals of polymer engineering. Plenum Press, New YorkCrossRef
2.
Zurück zum Zitat Kinlcoh AJ (1987) Adhesion and adhesive: science and technology, 1st edn. Chapman and Hall, LondonCrossRef Kinlcoh AJ (1987) Adhesion and adhesive: science and technology, 1st edn. Chapman and Hall, LondonCrossRef
3.
Zurück zum Zitat Chawla KK (2012) Composite materials: science and engineering. Springer, New YorkCrossRef Chawla KK (2012) Composite materials: science and engineering. Springer, New YorkCrossRef
4.
Zurück zum Zitat Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behavior of a rubber-toughened epoxy: 1 microstructure and fracture studies. Polymer 24:1341–1354CrossRef Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behavior of a rubber-toughened epoxy: 1 microstructure and fracture studies. Polymer 24:1341–1354CrossRef
5.
Zurück zum Zitat Kinloch AJ, Hunston DL (1986) Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. J Mater Sci Lett 5:1207–2109CrossRef Kinloch AJ, Hunston DL (1986) Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. J Mater Sci Lett 5:1207–2109CrossRef
6.
Zurück zum Zitat Imanaka M, Nakamura Y, Nishimura A, Iida T (2003) Fracture toughness of rubber-modified epoxy adhesive: effect of plastic deformability of matrix phase. Compos Sci Technol 63:41–51CrossRef Imanaka M, Nakamura Y, Nishimura A, Iida T (2003) Fracture toughness of rubber-modified epoxy adhesive: effect of plastic deformability of matrix phase. Compos Sci Technol 63:41–51CrossRef
7.
Zurück zum Zitat Imamaka M, Motohashi S, Nishi K, Nakamura Y, Kimoto M (2009) Crack-growth behavior of epoxy adhesives modified with liquid rubber and cross-linked rubber particles under Mode I loading. Int J Adhes Adhes 29:45–55CrossRef Imamaka M, Motohashi S, Nishi K, Nakamura Y, Kimoto M (2009) Crack-growth behavior of epoxy adhesives modified with liquid rubber and cross-linked rubber particles under Mode I loading. Int J Adhes Adhes 29:45–55CrossRef
8.
Zurück zum Zitat Lee DB, Ikeda T, Miyazaki N, Choi NS (2002) Damage zone around crack tip and fracture toughness of rubber-modified epoxy resin under mixed-mode conditions. Eng Fract Mech 69:1363–1375CrossRef Lee DB, Ikeda T, Miyazaki N, Choi NS (2002) Damage zone around crack tip and fracture toughness of rubber-modified epoxy resin under mixed-mode conditions. Eng Fract Mech 69:1363–1375CrossRef
9.
Zurück zum Zitat Johnsen BB, Kinloch AJ, Taylor AC (2005) Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer 46:7352–7369CrossRef Johnsen BB, Kinloch AJ, Taylor AC (2005) Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer 46:7352–7369CrossRef
11.
Zurück zum Zitat Brooker RD, Kinloch AJ, Taylor AC (2010) The morphology and fracture properties of thermoplastic-toughened epoxy polymers. J Adhes 86:726–741CrossRef Brooker RD, Kinloch AJ, Taylor AC (2010) The morphology and fracture properties of thermoplastic-toughened epoxy polymers. J Adhes 86:726–741CrossRef
12.
Zurück zum Zitat Nicolasi L, Guerra G, Migliaresi C, Nicolasi L, Benedetto ATD (1981) Mechanical properties of glass-bead filled polystyrene composites. Composites 12:33–37CrossRef Nicolasi L, Guerra G, Migliaresi C, Nicolasi L, Benedetto ATD (1981) Mechanical properties of glass-bead filled polystyrene composites. Composites 12:33–37CrossRef
13.
Zurück zum Zitat Lee J, Yee AF (2000) Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41:8363–8373CrossRef Lee J, Yee AF (2000) Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41:8363–8373CrossRef
14.
Zurück zum Zitat Kawaguchi T, Pearson RA (2003) The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer 44:4239–4247CrossRef Kawaguchi T, Pearson RA (2003) The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer 44:4239–4247CrossRef
15.
Zurück zum Zitat Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S (2010) The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51:6284–6294CrossRef Hsieh TH, Kinloch AJ, Masania K, Taylor AC, Sprenger S (2010) The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51:6284–6294CrossRef
16.
Zurück zum Zitat Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.1007/s10853-009-4064-9 CrossRef Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.​1007/​s10853-009-4064-9 CrossRef
17.
Zurück zum Zitat Conradi M, Zorko M, Kocijan A, Verpoest I (2013) Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers. Mater Chem Phys 137:910–915CrossRef Conradi M, Zorko M, Kocijan A, Verpoest I (2013) Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers. Mater Chem Phys 137:910–915CrossRef
18.
Zurück zum Zitat Ho MW, Lam CK, Lau KT, Ng DHL, Hui D (2006) Mechanical properties of epoxy-based composites using nanoclays. Compos Struct 75:415–421CrossRef Ho MW, Lam CK, Lau KT, Ng DHL, Hui D (2006) Mechanical properties of epoxy-based composites using nanoclays. Compos Struct 75:415–421CrossRef
19.
Zurück zum Zitat Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos Part A 63:149–158CrossRef Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos Part A 63:149–158CrossRef
20.
Zurück zum Zitat Zappalorto M, Salviato M, Quaresimin M (2013) Mixed mode (I+II) fracture toughness of nanoclay nanocomposites. Eng Fract Mech 111:50–64CrossRef Zappalorto M, Salviato M, Quaresimin M (2013) Mixed mode (I+II) fracture toughness of nanoclay nanocomposites. Eng Fract Mech 111:50–64CrossRef
21.
Zurück zum Zitat Shen MY, Chang TY, Hsieh TH, Li YL, Chiang CL, Yang H, Yip MC (2013) Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater 2013:1–9 Shen MY, Chang TY, Hsieh TH, Li YL, Chiang CL, Yang H, Yip MC (2013) Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J Nanomater 2013:1–9
22.
Zurück zum Zitat Wang PN, Hsieh TH, Chiang CL, Shen MY (2015) Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. J Nanomater 2015:1–9 Wang PN, Hsieh TH, Chiang CL, Shen MY (2015) Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. J Nanomater 2015:1–9
23.
Zurück zum Zitat Ahmadi-Moghadam B, Taheri F (2015) Influence of graphene nanoplatelets on modes I, II, and III interlaminar fracture toughness of fiber-reinforced polymer composites. Eng Fract Mech 143:97–107CrossRef Ahmadi-Moghadam B, Taheri F (2015) Influence of graphene nanoplatelets on modes I, II, and III interlaminar fracture toughness of fiber-reinforced polymer composites. Eng Fract Mech 143:97–107CrossRef
24.
Zurück zum Zitat Yeh MK, Tai NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9CrossRef Yeh MK, Tai NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9CrossRef
25.
Zurück zum Zitat Yeh MK, Tai NH, Liu YJ (2008) Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Compos Part A 39:677–684CrossRef Yeh MK, Tai NH, Liu YJ (2008) Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Compos Part A 39:677–684CrossRef
26.
Zurück zum Zitat Tai NH, Yeh MK, Peng TH (2008) Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites. Compos Part B 39:926–932CrossRef Tai NH, Yeh MK, Peng TH (2008) Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites. Compos Part B 39:926–932CrossRef
27.
Zurück zum Zitat Yeh MK, Hsieh TH, Tai NH (2008) Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Sci Eng A 483–484:289–292CrossRef Yeh MK, Hsieh TH, Tai NH (2008) Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Sci Eng A 483–484:289–292CrossRef
28.
Zurück zum Zitat Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535. doi:10.1007/s10853-011-5724-0 CrossRef Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535. doi:10.​1007/​s10853-011-5724-0 CrossRef
29.
Zurück zum Zitat Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des 31:2406–2413CrossRef Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des 31:2406–2413CrossRef
31.
Zurück zum Zitat Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
32.
Zurück zum Zitat Lee YJ, Park HW, Park S, Song IK (2012) Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Curr Appl Phys 12:233–237CrossRef Lee YJ, Park HW, Park S, Song IK (2012) Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor. Curr Appl Phys 12:233–237CrossRef
33.
Zurück zum Zitat Li J, Wang X, Huang Q, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788CrossRef Li J, Wang X, Huang Q, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788CrossRef
34.
Zurück zum Zitat Qin CL, Lu X, Yin GP, Bai XD, Jin Z (2009) Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Trans Nonferr Met Soc 19:738–742CrossRef Qin CL, Lu X, Yin GP, Bai XD, Jin Z (2009) Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Trans Nonferr Met Soc 19:738–742CrossRef
35.
Zurück zum Zitat Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451CrossRef Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451CrossRef
36.
Zurück zum Zitat Jiang S, Zhang Z, Lai Y, Qu Y, Wang X, Li J (2014) Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J Power Sour 267:394–404CrossRef Jiang S, Zhang Z, Lai Y, Qu Y, Wang X, Li J (2014) Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J Power Sour 267:394–404CrossRef
37.
Zurück zum Zitat Zhang Z, Jiang S, Lai Y, Li J, Song J, Li J (2015) Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance. J Power Sour 284:95–102CrossRef Zhang Z, Jiang S, Lai Y, Li J, Song J, Li J (2015) Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance. J Power Sour 284:95–102CrossRef
38.
Zurück zum Zitat Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N (2005) Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int J Hydrogen Energy 30:149–158CrossRef Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N (2005) Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int J Hydrogen Energy 30:149–158CrossRef
39.
Zurück zum Zitat Zhu H, Guo Z, Zhang X, Han K, Guo Y, Wang F, Wang Z, Wei Y (2012) Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell. Int J Hydrogen Energy 37:873–876CrossRef Zhu H, Guo Z, Zhang X, Han K, Guo Y, Wang F, Wang Z, Wei Y (2012) Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell. Int J Hydrogen Energy 37:873–876CrossRef
40.
Zurück zum Zitat Marie J, Chenitz R, Chatenet M, Berton-Fabry S, Cornet N, Achard P (2009) Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: experimental study of the mass-transport losses. J Power Sour 190:423–434CrossRef Marie J, Chenitz R, Chatenet M, Berton-Fabry S, Cornet N, Achard P (2009) Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: experimental study of the mass-transport losses. J Power Sour 190:423–434CrossRef
41.
Zurück zum Zitat Yang X, Sun Y, Shi D, Liu J (2011) Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite. Mater Sci Eng A 528:4830–4836CrossRef Yang X, Sun Y, Shi D, Liu J (2011) Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite. Mater Sci Eng A 528:4830–4836CrossRef
43.
Zurück zum Zitat Hsieh TH, Liang CH (2014) Improvement of impact absorbed energy of CFRPs on adding the nanoparticles into epoxy resins. J Chem Chem Eng 8:692–697 Hsieh TH, Liang CH (2014) Improvement of impact absorbed energy of CFRPs on adding the nanoparticles into epoxy resins. J Chem Chem Eng 8:692–697
44.
Zurück zum Zitat ASTM D3171 (2015) Standard test methods of constituent content of composite materials. ASTM, West Conshohocken ASTM D3171 (2015) Standard test methods of constituent content of composite materials. ASTM, West Conshohocken
45.
Zurück zum Zitat ASTM D3039 (2014) Standard test method for tensile properties of polymer matrix composite materials. ASTM, West Conshohocken ASTM D3039 (2014) Standard test method for tensile properties of polymer matrix composite materials. ASTM, West Conshohocken
46.
Zurück zum Zitat ASTM D3410 (2016) Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading. ASTM, West Conshohocken ASTM D3410 (2016) Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading. ASTM, West Conshohocken
47.
Zurück zum Zitat ISO-15024 (2001) Fiber-reinforced plastic composites—determination of mode I interlaminar fracture toughness, G IC, for unidirectionally reinforced materials. ISO, Geneva ISO-15024 (2001) Fiber-reinforced plastic composites—determination of mode I interlaminar fracture toughness, G IC, for unidirectionally reinforced materials. ISO, Geneva
48.
Zurück zum Zitat Willams JG (1987) Large displacement and end block effects in the DCB interlaminar test in Mode I and Mode II. J Compos Mater 21:330–347CrossRef Willams JG (1987) Large displacement and end block effects in the DCB interlaminar test in Mode I and Mode II. J Compos Mater 21:330–347CrossRef
49.
Zurück zum Zitat ISO-15114 (2014) Fiber-reinforced plastic composites—determination of mode II fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an effective crack length approach. ISO, Geneva ISO-15114 (2014) Fiber-reinforced plastic composites—determination of mode II fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an effective crack length approach. ISO, Geneva
50.
Zurück zum Zitat Blanco J, Garcia EJ, Villoria RG, Wardle BL (2009) Limiting mechanisms of Mode I interlaminar of composites reinforced with aligned carbon nanotubes. J Compos Mater 43:825–841CrossRef Blanco J, Garcia EJ, Villoria RG, Wardle BL (2009) Limiting mechanisms of Mode I interlaminar of composites reinforced with aligned carbon nanotubes. J Compos Mater 43:825–841CrossRef
51.
Zurück zum Zitat Zare Y (2015) Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech Mater 85:1–6CrossRef Zare Y (2015) Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech Mater 85:1–6CrossRef
Metadaten
Titel
The mechanical properties and delamination of carbon fiber-reinforced polymer laminates modified with carbon aerogel
verfasst von
Tsung-Han Hsieh
Yau-Shian Huang
Publikationsdatum
02.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0646-5

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Science 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.