Skip to main content
Erschienen in: Journal of Materials Science 20/2017

21.02.2017 | Mechanochemical Synthesis

Mechanochemically prepared reactive and energetic materials: a review

verfasst von: Edward L. Dreizin, Mirko Schoenitz

Erschienen in: Journal of Materials Science | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reactive and energetic materials are typically metastable and are expected to transform into thermodynamically favorable reaction products with substantial energy release. Preparation of such materials by mechanical milling is challenging: They are easily initiated by impact or friction. At the same time, milling offers a simple, scalable, and controllable technology capable of mixing reactive components on the nanoscale. In most cases, for reactive materials milling should be interrupted or arrested to preserve the metastable phases. Arrested reactive milling was exploited to prepare many inorganic reactive materials, including nanocomposite thermite, metal–metalloid, and intermetallic systems. Prepared materials are fully dense composites with unique properties, combining high density with extremely high reactivity. Different milling devices were used to prepare reactive materials and an approach was developed to transfer the process conditions between different mills. Different milling protocols, such as milling at cryogenic temperatures or staged milling can be used to prepare hybrid reactive materials with different components mixed on different scales; it was also used to tune the particle size distributions of metal-based reactive material powders. Metal–halogen composites were prepared, with metal matrix stabilizing a halogen (e.g., iodine) at temperatures substantially exceeding its boiling point. Mechanochemically prepared reactive materials can be classified based on the energy of reaction between components and the energy of oxidation of the bulk material composition. Work on mechanochemical preparation of reactive and energetic materials is reviewed with the focus on unique properties and ignition and combustion mechanisms of the mechanochemically prepared reactive materials. An ignition mechanism for nanothermites involving preignition reaction leading to a gas release preceding rapid temperature rise is discussed. A combustion mechanism is also discussed, in which the nanostructure of the mechanochemically prepared material is preserved despite the very high combustion temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167CrossRef Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167CrossRef
2.
Zurück zum Zitat Kappagantula KS, Clark B, Pantoya ML (2011) Flame propagation experiments of non-gas-generating nanocomposite reactive materials. Energy Fuels 25:640–646CrossRef Kappagantula KS, Clark B, Pantoya ML (2011) Flame propagation experiments of non-gas-generating nanocomposite reactive materials. Energy Fuels 25:640–646CrossRef
3.
Zurück zum Zitat Gibbins JD, Stover AK, Krywopusk NM, Woll K, Weihs TP (2015) Properties of reactive Al:Ni compacts fabricated by radial forging of elemental and alloy powders. Combust Flame 162:4408–4416CrossRef Gibbins JD, Stover AK, Krywopusk NM, Woll K, Weihs TP (2015) Properties of reactive Al:Ni compacts fabricated by radial forging of elemental and alloy powders. Combust Flame 162:4408–4416CrossRef
4.
Zurück zum Zitat Manukyan KV, Tan W, Deboer RJ, Stech EJ, Aprahamian A, Wiescher M, Rouvimov S, Overdeep KR, Shuck CE, Weihs TP, Mukasyan AS (2015) Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials. ACS Appl Mater Interfaces 7:11272–11279CrossRef Manukyan KV, Tan W, Deboer RJ, Stech EJ, Aprahamian A, Wiescher M, Rouvimov S, Overdeep KR, Shuck CE, Weihs TP, Mukasyan AS (2015) Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials. ACS Appl Mater Interfaces 7:11272–11279CrossRef
5.
Zurück zum Zitat Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305CrossRef Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305CrossRef
6.
Zurück zum Zitat Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204CrossRef Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204CrossRef
7.
Zurück zum Zitat Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132CrossRef Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132CrossRef
8.
Zurück zum Zitat Friščić T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605CrossRef Friščić T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605CrossRef
9.
Zurück zum Zitat James SL, Adams CJ, Bolm C, Braga D, Collier P, Friić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, MacK J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRef James SL, Adams CJ, Bolm C, Braga D, Collier P, Friić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, MacK J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRef
10.
Zurück zum Zitat Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388–403CrossRef Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388–403CrossRef
11.
Zurück zum Zitat Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
12.
Zurück zum Zitat Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659CrossRef Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659CrossRef
13.
Zurück zum Zitat Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem Soc Rev 41:3493–3510CrossRef Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem Soc Rev 41:3493–3510CrossRef
14.
Zurück zum Zitat Shoshin YL, Mudryy RS, Dreizin EL (2002) Preparation and characterization of energetic Al–Mg mechanical alloy powders. Combust Flame 128:259–269CrossRef Shoshin YL, Mudryy RS, Dreizin EL (2002) Preparation and characterization of energetic Al–Mg mechanical alloy powders. Combust Flame 128:259–269CrossRef
15.
Zurück zum Zitat Wang Y, Jiang W, Zhang X, Liu H, Liu Y, Li F (2011) Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure. Thermochim Acta 512:233–239CrossRef Wang Y, Jiang W, Zhang X, Liu H, Liu Y, Li F (2011) Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure. Thermochim Acta 512:233–239CrossRef
16.
Zurück zum Zitat Aly Y, Dreizin EL (2015) Ignition and combustion of Al·Mg alloy powders prepared by different techniques. Combust Flame 162:1440–1447CrossRef Aly Y, Dreizin EL (2015) Ignition and combustion of Al·Mg alloy powders prepared by different techniques. Combust Flame 162:1440–1447CrossRef
17.
Zurück zum Zitat Schoenitz M, Zhu X, Dreizin EL (2004) Mechanical alloys in the Al-rich part of the Al–Ti binary system. J Metastable Nanocryst Mater 20–21:455–461CrossRef Schoenitz M, Zhu X, Dreizin EL (2004) Mechanical alloys in the Al-rich part of the Al–Ti binary system. J Metastable Nanocryst Mater 20–21:455–461CrossRef
18.
Zurück zum Zitat Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL (2008) Aluminum-rich Al–MoO3 nanocomposite powders prepared by arrested reactive milling. J Propuls Power 24:192–198CrossRef Umbrajkar SM, Seshadri S, Schoenitz M, Hoffmann VK, Dreizin EL (2008) Aluminum-rich Al–MoO3 nanocomposite powders prepared by arrested reactive milling. J Propuls Power 24:192–198CrossRef
19.
Zurück zum Zitat Stamatis D, Jiang Z, Hoffmann VK, Schoenitz M, Dreizin EL (2009) Fully dense, aluminum-rich Al–CuO nanocomposite powders for energetic formulations. Combust Sci Technol 181:97–116CrossRef Stamatis D, Jiang Z, Hoffmann VK, Schoenitz M, Dreizin EL (2009) Fully dense, aluminum-rich Al–CuO nanocomposite powders for energetic formulations. Combust Sci Technol 181:97–116CrossRef
20.
Zurück zum Zitat Trunov MA, Hoffmann VK, Schoenitz M, Dreizin EL (2008) Combustion of boron–titanium nanocomposite powders in different environments. J Propuls Power 24:184–191CrossRef Trunov MA, Hoffmann VK, Schoenitz M, Dreizin EL (2008) Combustion of boron–titanium nanocomposite powders in different environments. J Propuls Power 24:184–191CrossRef
21.
Zurück zum Zitat Stamatis D, Jiang X, Beloni E, Dreizin EL (2010) Aluminum burn rate modifiers based on reactive nanocomposite powders. Propellants Explos Pyrotech 35:260–267CrossRef Stamatis D, Jiang X, Beloni E, Dreizin EL (2010) Aluminum burn rate modifiers based on reactive nanocomposite powders. Propellants Explos Pyrotech 35:260–267CrossRef
22.
Zurück zum Zitat Hugus GD, Sheridan EW, Brooks GW (2007) Dispersed metal–metal binder matrix structural materials for incorporation into reactive fragmentation weapons. Lockheed Martin Corporation, Maryland, p 11 Hugus GD, Sheridan EW, Brooks GW (2007) Dispersed metal–metal binder matrix structural materials for incorporation into reactive fragmentation weapons. Lockheed Martin Corporation, Maryland, p 11
23.
Zurück zum Zitat Langan T, Buchta WM, Riley MA (2005) Thermal spraying of multiple layers for deposition of reactive or composite materials on a substrate, USA. Cont-in-part of U.S. Series No 869,094 Langan T, Buchta WM, Riley MA (2005) Thermal spraying of multiple layers for deposition of reactive or composite materials on a substrate, USA. Cont-in-part of U.S. Series No 869,094
24.
Zurück zum Zitat Langan T, Riley MA (2007) Shock initiation devices including reactive multilayer structures. Surface Treatment Technologies, Inc., USA. Cont-in-part of U.S. Series No 839,638 Langan T, Riley MA (2007) Shock initiation devices including reactive multilayer structures. Surface Treatment Technologies, Inc., USA. Cont-in-part of U.S. Series No 839,638
25.
Zurück zum Zitat Grigorieva TF, Barinova AP, Lyakhov NZ (2003) Mechanosynthesis of nanocomposites. J Nanopart Res 5:439–453CrossRef Grigorieva TF, Barinova AP, Lyakhov NZ (2003) Mechanosynthesis of nanocomposites. J Nanopart Res 5:439–453CrossRef
26.
Zurück zum Zitat Jin HB, Yang Y, Chen YX, Lin ZM, Li JT (2006) Mechanochemical-activation-assisted combustion synthesis of α-Si3N4. J Am Ceram Soc 89:1099–1102CrossRef Jin HB, Yang Y, Chen YX, Lin ZM, Li JT (2006) Mechanochemical-activation-assisted combustion synthesis of α-Si3N4. J Am Ceram Soc 89:1099–1102CrossRef
27.
Zurück zum Zitat Takacs L, Susol MA (1996) Combustive mechanochemical reactions in off-stoichiometric powder mixtures. Mater Sci Forum 225–227:559–562CrossRef Takacs L, Susol MA (1996) Combustive mechanochemical reactions in off-stoichiometric powder mixtures. Mater Sci Forum 225–227:559–562CrossRef
28.
Zurück zum Zitat Dupiano P, Stamatis D, Dreizin EL (2011) Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. Int J Hydrogen Energy 36:4781–4791CrossRef Dupiano P, Stamatis D, Dreizin EL (2011) Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders. Int J Hydrogen Energy 36:4781–4791CrossRef
29.
Zurück zum Zitat Ilyukhina AV, Kravchenko OV, Bulychev BM (2017) Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J Alloys Compd 690:321–329CrossRef Ilyukhina AV, Kravchenko OV, Bulychev BM (2017) Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J Alloys Compd 690:321–329CrossRef
30.
Zurück zum Zitat Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Powers M, Whitener M, Weihs TP (2003) Room-temperature soldering with nanostructured foils. Appl Phys Lett 83:3987–3989CrossRef Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Powers M, Whitener M, Weihs TP (2003) Room-temperature soldering with nanostructured foils. Appl Phys Lett 83:3987–3989CrossRef
31.
Zurück zum Zitat Duckham A, Spey SJ, Wang J, Reiss ME, Weihs TP, Besnoin E, Knio OM (2004) Reactive nanostructured foil used as a heat source for joining titanium. J Appl Phys 96:2336–2342CrossRef Duckham A, Spey SJ, Wang J, Reiss ME, Weihs TP, Besnoin E, Knio OM (2004) Reactive nanostructured foil used as a heat source for joining titanium. J Appl Phys 96:2336–2342CrossRef
32.
Zurück zum Zitat Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Weihs TP (2004) Joining of stainless-steel specimens with nanostructured Al/Ni foils. J Appl Phys 95:248–256CrossRef Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Weihs TP (2004) Joining of stainless-steel specimens with nanostructured Al/Ni foils. J Appl Phys 95:248–256CrossRef
33.
Zurück zum Zitat Suryanarayana C (2008) Recent developments in mechanical alloying. Rev Adv Mater Sci 18:203–211 Suryanarayana C (2008) Recent developments in mechanical alloying. Rev Adv Mater Sci 18:203–211
34.
Zurück zum Zitat Suryanarayana C, Ivanov E, Boldyrev VV (2001) The science and technology of mechanical alloying. Mater Sci Eng, A 304–306:151–158CrossRef Suryanarayana C, Ivanov E, Boldyrev VV (2001) The science and technology of mechanical alloying. Mater Sci Eng, A 304–306:151–158CrossRef
35.
Zurück zum Zitat Zhang DL (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49:537–560CrossRef Zhang DL (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49:537–560CrossRef
36.
Zurück zum Zitat Concas A, Lai N, Pisu M, Cao G (2006) Modelling of comminution processes in Spex Mixer/Mill. Chem Eng Sci 61:3746–3760CrossRef Concas A, Lai N, Pisu M, Cao G (2006) Modelling of comminution processes in Spex Mixer/Mill. Chem Eng Sci 61:3746–3760CrossRef
37.
Zurück zum Zitat Maurice D, Courtney TH (1996) Milling dynamics: part. II. Dynamics of a SPEX mill and a one-dimensional mill. Metall Mater Trans A 27:1873–1979 Maurice D, Courtney TH (1996) Milling dynamics: part. II. Dynamics of a SPEX mill and a one-dimensional mill. Metall Mater Trans A 27:1873–1979
38.
Zurück zum Zitat Davis RM, McDermott B, Koch CC (1988) Mechanical alloying of brittle materials. Metall Trans A 19:2867–2874CrossRef Davis RM, McDermott B, Koch CC (1988) Mechanical alloying of brittle materials. Metall Trans A 19:2867–2874CrossRef
39.
Zurück zum Zitat Aronov MI, Morgulis LM (1958) Laboratory excentric vibratory mill for pulverizing small portions of material. In: C.f.I.a.D.o.t.U.C.o. Ministers (ed) USSR Aronov MI, Morgulis LM (1958) Laboratory excentric vibratory mill for pulverizing small portions of material. In: C.f.I.a.D.o.t.U.C.o. Ministers (ed) USSR
40.
Zurück zum Zitat Kwon Y-S, Gerasimov KB, Yoon S-K (2002) Ball temperatures during mechanical alloying in planetary mills. J Alloys Compd 346:276–281CrossRef Kwon Y-S, Gerasimov KB, Yoon S-K (2002) Ball temperatures during mechanical alloying in planetary mills. J Alloys Compd 346:276–281CrossRef
41.
Zurück zum Zitat Xi SQ, Zhou JG, Wang XT (2007) Research on temperature rise of powder during high energy ball milling. Powder Metall 50:367–373CrossRef Xi SQ, Zhou JG, Wang XT (2007) Research on temperature rise of powder during high energy ball milling. Powder Metall 50:367–373CrossRef
42.
Zurück zum Zitat Kimura H, Kimura M, Takada F (1988) Development of an extremely high energy ball mill for solid state amorphizing transformations. J Less Common Met 140:113–118CrossRef Kimura H, Kimura M, Takada F (1988) Development of an extremely high energy ball mill for solid state amorphizing transformations. J Less Common Met 140:113–118CrossRef
43.
Zurück zum Zitat Santhanam PR, Dreizin EL (2013) Real time indicators of material refinement in an attritor mill. AIChE J 59(4):1088–1095CrossRef Santhanam PR, Dreizin EL (2013) Real time indicators of material refinement in an attritor mill. AIChE J 59(4):1088–1095CrossRef
44.
Zurück zum Zitat Golyshev LV, Mysak IS (2012) The method for determining the ball load and the grinding capacity of a ball-tube mill from the power consumed by its electric motor. Therm Eng 59:589–592 (English translation of Teploenergetika) CrossRef Golyshev LV, Mysak IS (2012) The method for determining the ball load and the grinding capacity of a ball-tube mill from the power consumed by its electric motor. Therm Eng 59:589–592 (English translation of Teploenergetika) CrossRef
45.
Zurück zum Zitat Umbrajkar SM, Schoenitz M, Jones SR, Dreizin EL (2005) Effect of temperature on synthesis and properties of aluminum–magnesium mechanical alloys. J Alloys Compd 402:70–77CrossRef Umbrajkar SM, Schoenitz M, Jones SR, Dreizin EL (2005) Effect of temperature on synthesis and properties of aluminum–magnesium mechanical alloys. J Alloys Compd 402:70–77CrossRef
46.
Zurück zum Zitat Ward TS, Chen W, Schoenitz M, Dave RN, Dreizin EL (2005) A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater 53:2909–2918CrossRef Ward TS, Chen W, Schoenitz M, Dave RN, Dreizin EL (2005) A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Mater 53:2909–2918CrossRef
47.
Zurück zum Zitat Schoenitz M, Ward TS, Dreizin EL (2005) Fully dense nano-composite energetic powders prepared by arrested reactive milling. Proc Combust Inst 30:2071–2078CrossRef Schoenitz M, Ward TS, Dreizin EL (2005) Fully dense nano-composite energetic powders prepared by arrested reactive milling. Proc Combust Inst 30:2071–2078CrossRef
48.
Zurück zum Zitat Park YH, Hashimoto H, Abe T, Watanabe R (1994) Mechanical alloying process of metal-B (M ≡ Ti, Zr) powder mixture. Mater Sci Eng A 181–182:1291–1295CrossRef Park YH, Hashimoto H, Abe T, Watanabe R (1994) Mechanical alloying process of metal-B (M ≡ Ti, Zr) powder mixture. Mater Sci Eng A 181–182:1291–1295CrossRef
49.
Zurück zum Zitat Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Control of structural refinement and composition in Al–MoO3 nanocomposites prepared by arrested reactive milling. Propellants Explos Pyrotech 31:382–389CrossRef Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Control of structural refinement and composition in Al–MoO3 nanocomposites prepared by arrested reactive milling. Propellants Explos Pyrotech 31:382–389CrossRef
50.
Zurück zum Zitat Dreizin EL, Schoenitz M (2009) Nano-composite energetic powders prepared by arrested reactive milling. US Patent 7,524,355 Dreizin EL, Schoenitz M (2009) Nano-composite energetic powders prepared by arrested reactive milling. US Patent 7,524,355
51.
Zurück zum Zitat Abraham A, Zhang S, Aly Y, Schoenitz M, Dreizin EL (2014) Aluminum–iodoform composite reactive material. Adv Eng Mater 16(7):909–917CrossRef Abraham A, Zhang S, Aly Y, Schoenitz M, Dreizin EL (2014) Aluminum–iodoform composite reactive material. Adv Eng Mater 16(7):909–917CrossRef
52.
Zurück zum Zitat Zhang S, Schoenitz M, Dreizin EL (2010) Mechanically alloyed Al–I composite materials. J Phys Chem Solids 71:1213–1220CrossRef Zhang S, Schoenitz M, Dreizin EL (2010) Mechanically alloyed Al–I composite materials. J Phys Chem Solids 71:1213–1220CrossRef
53.
Zurück zum Zitat Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 38:286–295CrossRef Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech 38:286–295CrossRef
54.
Zurück zum Zitat Yu J, McMahon BW, Boatz JA, Anderson SL (2016) Aluminum nanoparticle production by acetonitrile-assisted milling: effects of liquid- vs vapor-phase milling and of milling method on particle size and surface chemistry. J Phys Chem C 120:19613–19629CrossRef Yu J, McMahon BW, Boatz JA, Anderson SL (2016) Aluminum nanoparticle production by acetonitrile-assisted milling: effects of liquid- vs vapor-phase milling and of milling method on particle size and surface chemistry. J Phys Chem C 120:19613–19629CrossRef
55.
Zurück zum Zitat Dreizin EL, Schoenitz MA (2014) Reactive and metastable nanomaterials prepared by mechanical milling. Metal Nanopowders. Wiley-VCH Verlag GmbH & Co. KGa, pp 227–278 Dreizin EL, Schoenitz MA (2014) Reactive and metastable nanomaterials prepared by mechanical milling. Metal Nanopowders. Wiley-VCH Verlag GmbH & Co. KGa, pp 227–278
56.
Zurück zum Zitat Iizumi K, Sekiya C, Okada S, Kudou K, Shishido T (2006) Mechanochemically assisted preparation of NbB2 powder. J Eur Ceram Soc 26:635–638CrossRef Iizumi K, Sekiya C, Okada S, Kudou K, Shishido T (2006) Mechanochemically assisted preparation of NbB2 powder. J Eur Ceram Soc 26:635–638CrossRef
57.
Zurück zum Zitat Shin H, Lee S, Jung HS, Kim JB (2013) Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram Int 39:8963–8968CrossRef Shin H, Lee S, Jung HS, Kim JB (2013) Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram Int 39:8963–8968CrossRef
58.
Zurück zum Zitat Aikin BJM, Courtney TH (1993) The kinetics of composite particle formation during mechanical alloying. Metall Trans A 24:647–657CrossRef Aikin BJM, Courtney TH (1993) The kinetics of composite particle formation during mechanical alloying. Metall Trans A 24:647–657CrossRef
59.
Zurück zum Zitat Delogu F, Mulas G, Schiffini L, Cocco G (2004) Mechanical work and conversion degree in mechanically induced processes. Mater Sci Eng A 382:280–287CrossRef Delogu F, Mulas G, Schiffini L, Cocco G (2004) Mechanical work and conversion degree in mechanically induced processes. Mater Sci Eng A 382:280–287CrossRef
60.
Zurück zum Zitat Santhanam PR, Ermoline A, Dreizin EL (2013) Discrete element model for an attritor mill with impeller responding to interactions with milling balls. Chem Eng Sci 101:366–373CrossRef Santhanam PR, Ermoline A, Dreizin EL (2013) Discrete element model for an attritor mill with impeller responding to interactions with milling balls. Chem Eng Sci 101:366–373CrossRef
61.
Zurück zum Zitat Mojarrad NR, Kheirifard R, Mousavian RT, Afkham Y, Nakisa S (2016) Filling ratio of vial: an important parameter for ball milling. J Therm Anal Calorim 126(3):1097–1103CrossRef Mojarrad NR, Kheirifard R, Mousavian RT, Afkham Y, Nakisa S (2016) Filling ratio of vial: an important parameter for ball milling. J Therm Anal Calorim 126(3):1097–1103CrossRef
62.
Zurück zum Zitat Zhang S, Schoenitz M, Dreizin EL (2013) Nearly pure aluminum powders with modified protective surface. Combust Sci Technol 185:1360–1377CrossRef Zhang S, Schoenitz M, Dreizin EL (2013) Nearly pure aluminum powders with modified protective surface. Combust Sci Technol 185:1360–1377CrossRef
63.
Zurück zum Zitat Zhang S, Schoenitz M, Dreizin EL (2012) Metastable aluminum-based reactive composite materials prepared by cryomilling, Nashville, TN Zhang S, Schoenitz M, Dreizin EL (2012) Metastable aluminum-based reactive composite materials prepared by cryomilling, Nashville, TN
64.
Zurück zum Zitat Badiola C, Schoenitz M, Zhu X, Dreizin EL (2009) Nanocomposite thermite powders prepared by cryomilling. J Alloys Compd 488:386–391CrossRef Badiola C, Schoenitz M, Zhu X, Dreizin EL (2009) Nanocomposite thermite powders prepared by cryomilling. J Alloys Compd 488:386–391CrossRef
65.
Zurück zum Zitat Aly Y, Hoffman VK, Schoenitz M, Dreizin EL (2014) Reactive, mechanically alloyed Al·Mg powders with customized particle sizes and compositions. J Propuls Power 30:96–104CrossRef Aly Y, Hoffman VK, Schoenitz M, Dreizin EL (2014) Reactive, mechanically alloyed Al·Mg powders with customized particle sizes and compositions. J Propuls Power 30:96–104CrossRef
66.
Zurück zum Zitat Butyagin PY, Pavlichev IK (1986) Determination of energy yield of mechanochemical reactions. React Solids 1:361–372CrossRef Butyagin PY, Pavlichev IK (1986) Determination of energy yield of mechanochemical reactions. React Solids 1:361–372CrossRef
67.
Zurück zum Zitat Butyagin PY (1989) Active states in mechanochemical reactions. Harwood Academic Publishers, New York Butyagin PY (1989) Active states in mechanochemical reactions. Harwood Academic Publishers, New York
68.
Zurück zum Zitat Streletskii AN (1993) Measurements and calculation of main parameters of powder mechanical treatment in different mills. In: DeBarbadillo JJ, Schwarz RB (eds) Second international conference on structural applications of mechanical alloying. ASM International, Vancouver, pp 51–58 Streletskii AN (1993) Measurements and calculation of main parameters of powder mechanical treatment in different mills. In: DeBarbadillo JJ, Schwarz RB (eds) Second international conference on structural applications of mechanical alloying. ASM International, Vancouver, pp 51–58
69.
Zurück zum Zitat Delogu F, Schiffini L, Cocco G (2001) The invariant laws of the amorphization processes by mechanical alloying I. Experimental findings. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 81:1917–1937 Delogu F, Schiffini L, Cocco G (2001) The invariant laws of the amorphization processes by mechanical alloying I. Experimental findings. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 81:1917–1937
70.
Zurück zum Zitat Santhanam PR, Dreizin EL (2012) Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol 201:401–411 Santhanam PR, Dreizin EL (2012) Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol 201:401–411
71.
Zurück zum Zitat Beloni E, Hoffmann VK, Dreizin EL (2008) Combustion of decane-based slurries with metallic fuel additives. J Propuls Power 24:1403–1411CrossRef Beloni E, Hoffmann VK, Dreizin EL (2008) Combustion of decane-based slurries with metallic fuel additives. J Propuls Power 24:1403–1411CrossRef
72.
Zurück zum Zitat Zhu X, Schoenitz M, Dreizin EL (2007) Mechanically alloyed Al–Li powders. J Alloys Compd 432:111–115CrossRef Zhu X, Schoenitz M, Dreizin EL (2007) Mechanically alloyed Al–Li powders. J Alloys Compd 432:111–115CrossRef
73.
Zurück zum Zitat Williams RA, Schoenitz M, Ermoline A, Dreizin EL (2014) Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders. Thermochim Acta 594:1–10CrossRef Williams RA, Schoenitz M, Ermoline A, Dreizin EL (2014) Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders. Thermochim Acta 594:1–10CrossRef
74.
Zurück zum Zitat Zou MS, Du XJ, Li XD, Yang RJ (2013) Research progress in super thermite prepared by arrested reactive milling. Binggong Xuebao/Acta Armamentarii 34:783–791 Zou MS, Du XJ, Li XD, Yang RJ (2013) Research progress in super thermite prepared by arrested reactive milling. Binggong Xuebao/Acta Armamentarii 34:783–791
75.
Zurück zum Zitat Ermoline A, Schoenitz M, Dreizin EL (2011) Reactions leading to ignition in fully dense nanocomposite Al-oxide systems. Combust Flame 158:1076–1083CrossRef Ermoline A, Schoenitz M, Dreizin EL (2011) Reactions leading to ignition in fully dense nanocomposite Al-oxide systems. Combust Flame 158:1076–1083CrossRef
76.
Zurück zum Zitat Monk I, Schoenitz M, Dreizin EL (2017) Modes of ignition of powder layers of nanocomposite thermites by electrostatic discharge. J Energ Mater 35(1):29–43CrossRef Monk I, Schoenitz M, Dreizin EL (2017) Modes of ignition of powder layers of nanocomposite thermites by electrostatic discharge. J Energ Mater 35(1):29–43CrossRef
77.
Zurück zum Zitat Umbrajkar S, Trunov MA, Schoenitz M, Dreizin EL, Broad R (2007) Arrested reactive milling synthesis and characterization of sodium-nitrate based reactive composites. Propellants Explos Pyrotech 32:32–41CrossRef Umbrajkar S, Trunov MA, Schoenitz M, Dreizin EL, Broad R (2007) Arrested reactive milling synthesis and characterization of sodium-nitrate based reactive composites. Propellants Explos Pyrotech 32:32–41CrossRef
78.
Zurück zum Zitat Dolgoborodov AY, Makhov MN, Kolbanev IV, Streletskiǐ AN, Fortov VE (2005) Detonation in an aluminum-teflon mixture. JETP Lett 81:311–314CrossRef Dolgoborodov AY, Makhov MN, Kolbanev IV, Streletskiǐ AN, Fortov VE (2005) Detonation in an aluminum-teflon mixture. JETP Lett 81:311–314CrossRef
79.
Zurück zum Zitat Streletskii AN, Kolbanev IV, Permenov DG, Povstugar IV, Borunova AB, Dolgoborodov AY, Makhov MN, Butyagin PY (2008) The reactivity of Ai-based “mechanochemical” nanocomposites. Rev Adv Mater Sci 18:353–359 Streletskii AN, Kolbanev IV, Permenov DG, Povstugar IV, Borunova AB, Dolgoborodov AY, Makhov MN, Butyagin PY (2008) The reactivity of Ai-based “mechanochemical” nanocomposites. Rev Adv Mater Sci 18:353–359
80.
Zurück zum Zitat Gaurav M, Ramakrishna PA (2016) Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust Flame 166:203–215CrossRef Gaurav M, Ramakrishna PA (2016) Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust Flame 166:203–215CrossRef
81.
Zurück zum Zitat Hadjiafxenti A, Gunduz IE, Doumanidis CC, Rebholz C (2014) Spark ignitable ball milled powders of Al and Ni at NiAl composition. Vacuum 101:275–278CrossRef Hadjiafxenti A, Gunduz IE, Doumanidis CC, Rebholz C (2014) Spark ignitable ball milled powders of Al and Ni at NiAl composition. Vacuum 101:275–278CrossRef
82.
Zurück zum Zitat Hadjiafxenti A, Gunduz IE, Tsotsos C, Kyratsi T, Doumanidis CC, Rebholz C (2010) Synthesis of reactive Al/Ni structures by ball milling. Intermetallics 18:2219–2223CrossRef Hadjiafxenti A, Gunduz IE, Tsotsos C, Kyratsi T, Doumanidis CC, Rebholz C (2010) Synthesis of reactive Al/Ni structures by ball milling. Intermetallics 18:2219–2223CrossRef
83.
Zurück zum Zitat Manukyan KV, Mason BA, Groven LJ, Lin YC, Cherukara M, Son SF, Strachan A, Mukasyan AS (2012) Tailored reactivity of Ni + Al nanocomposites: microstructural correlations. J Phys Chem C 116:21027–21038CrossRef Manukyan KV, Mason BA, Groven LJ, Lin YC, Cherukara M, Son SF, Strachan A, Mukasyan AS (2012) Tailored reactivity of Ni + Al nanocomposites: microstructural correlations. J Phys Chem C 116:21027–21038CrossRef
84.
Zurück zum Zitat Jiang X, Trunov MA, Schoenitz M, Dave RN, Dreizin EL (2008) Mechanical alloying and reactive milling in a high energy planetary mill, Hartford, CT Jiang X, Trunov MA, Schoenitz M, Dave RN, Dreizin EL (2008) Mechanical alloying and reactive milling in a high energy planetary mill, Hartford, CT
85.
Zurück zum Zitat Corcoran AL, Wang S, Aly Y, Dreizin EL (2015) Combustion of mechanically alloyed Al·Mg powders in products of a hydrocarbon flame. Combust Sci Technol 187:807–825CrossRef Corcoran AL, Wang S, Aly Y, Dreizin EL (2015) Combustion of mechanically alloyed Al·Mg powders in products of a hydrocarbon flame. Combust Sci Technol 187:807–825CrossRef
86.
Zurück zum Zitat Schoenitz M, Dreizin E (2004) Oxidation processes and phase changes in metastable Al–Mg alloys. J Propuls Power 20:1064–1068CrossRef Schoenitz M, Dreizin E (2004) Oxidation processes and phase changes in metastable Al–Mg alloys. J Propuls Power 20:1064–1068CrossRef
87.
Zurück zum Zitat Schoenitz M, Dreizin EL (2003) Structure and properties of Al–Mg mechanical alloys. J Mater Res 18:1827–1836CrossRef Schoenitz M, Dreizin EL (2003) Structure and properties of Al–Mg mechanical alloys. J Mater Res 18:1827–1836CrossRef
88.
Zurück zum Zitat Chen R-H, Suryanarayana C, Chaos M (2006) Combustion characteristics of mechanically alloyed ultrafine-grained Al–Mg powders. Adv Eng Mater 8:563–567CrossRef Chen R-H, Suryanarayana C, Chaos M (2006) Combustion characteristics of mechanically alloyed ultrafine-grained Al–Mg powders. Adv Eng Mater 8:563–567CrossRef
89.
Zurück zum Zitat Schoenitz M, Zhu X, Dreizin EL (2005) Carbide formation in Al–Ti mechanical alloys. Scripta Mater 53:1095–1099CrossRef Schoenitz M, Zhu X, Dreizin EL (2005) Carbide formation in Al–Ti mechanical alloys. Scripta Mater 53:1095–1099CrossRef
90.
Zurück zum Zitat Shoshin YL, Dreizin EL (2006) Particle combustion rates for mechanically alloyed Al–Ti and aluminum powders burning in air. Combust Flame 145:714–722CrossRef Shoshin YL, Dreizin EL (2006) Particle combustion rates for mechanically alloyed Al–Ti and aluminum powders burning in air. Combust Flame 145:714–722CrossRef
91.
Zurück zum Zitat Shoshin YL, Trunov MA, Zhu X, Schoenitz M, Dreizin EL (2006) Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combust Flame 144:688–697CrossRef Shoshin YL, Trunov MA, Zhu X, Schoenitz M, Dreizin EL (2006) Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combust Flame 144:688–697CrossRef
92.
Zurück zum Zitat Shoshin Y, Dreizin EL (2004) Laminar lifted flame speed measurements for aerosols of metals and mechanical alloys. AIAA J 42:1416–1426CrossRef Shoshin Y, Dreizin EL (2004) Laminar lifted flame speed measurements for aerosols of metals and mechanical alloys. AIAA J 42:1416–1426CrossRef
93.
Zurück zum Zitat Shkolnikov EI, Zhuk AZ, Vlaskin MS (2011) Aluminum as energy carrier: feasibility analysis and current technologies overview. Renew Sustain Energy Rev 15:4611–4623CrossRef Shkolnikov EI, Zhuk AZ, Vlaskin MS (2011) Aluminum as energy carrier: feasibility analysis and current technologies overview. Renew Sustain Energy Rev 15:4611–4623CrossRef
94.
Zurück zum Zitat Van Devener B, Perez JPL, Jankovich J, Anderson SL (2009) Oxide-free, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energy Fuels 23:6111–6120CrossRef Van Devener B, Perez JPL, Jankovich J, Anderson SL (2009) Oxide-free, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energy Fuels 23:6111–6120CrossRef
95.
Zurück zum Zitat Miller M, Doorenbos Z, Puszynski M, Armstrong L, Kapoor D, Puszynski J (2012) Nanoscale aluminum, silicon and aluminum/silicon mixture formation for use in pyrotechnic applications. In: AIChE Annual meeting, conference proceedings Miller M, Doorenbos Z, Puszynski M, Armstrong L, Kapoor D, Puszynski J (2012) Nanoscale aluminum, silicon and aluminum/silicon mixture formation for use in pyrotechnic applications. In: AIChE Annual meeting, conference proceedings
96.
Zurück zum Zitat Streletskii AN, Kolbanev IV, Leonov AV, Dolgoborodov AY, Vorob’eva GA, Sivak MV, Permenov DG (2015) Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites. Colloid J 77:213–225CrossRef Streletskii AN, Kolbanev IV, Leonov AV, Dolgoborodov AY, Vorob’eva GA, Sivak MV, Permenov DG (2015) Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites. Colloid J 77:213–225CrossRef
97.
Zurück zum Zitat Sippel TR, Son SF, Groven LJ, Zhang S, Dreizin EL (2015) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame 162:846–854CrossRef Sippel TR, Son SF, Groven LJ, Zhang S, Dreizin EL (2015) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame 162:846–854CrossRef
99.
Zurück zum Zitat Bernard F, Souha H, Gaffet E (2000) Enhancement of self-sustaining reaction Cu3Si phase formation starting from mechanically activated powders. Mater Sci Eng A 284:301–306CrossRef Bernard F, Souha H, Gaffet E (2000) Enhancement of self-sustaining reaction Cu3Si phase formation starting from mechanically activated powders. Mater Sci Eng A 284:301–306CrossRef
100.
Zurück zum Zitat Tsuchida T, Yamamoto S (2004) Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J Eur Ceram Soc 24:45–51CrossRef Tsuchida T, Yamamoto S (2004) Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J Eur Ceram Soc 24:45–51CrossRef
101.
Zurück zum Zitat Kochetov NA, Vadchenko SG (2012) Mechanically activated SHS of NiAl: effect of Ni morphology and mechanoactivation conditions. Int J Self Propag High Temp Synth 21:55–58CrossRef Kochetov NA, Vadchenko SG (2012) Mechanically activated SHS of NiAl: effect of Ni morphology and mechanoactivation conditions. Int J Self Propag High Temp Synth 21:55–58CrossRef
102.
Zurück zum Zitat Kochetov NA, Vadchenko SG (2015) Effect of the time of mechanical activation of a Ti + 2B mixture on combustion of cylindrical samples and thin foils. Combust Explos Shock Waves 51:467–471CrossRef Kochetov NA, Vadchenko SG (2015) Effect of the time of mechanical activation of a Ti + 2B mixture on combustion of cylindrical samples and thin foils. Combust Explos Shock Waves 51:467–471CrossRef
103.
Zurück zum Zitat Korchagin MA, Grigor’eva TF, Bokhonov BB, Sharafutdinov MR, Barinova AP, Lyakhov NZ (2003) Solid-state combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product composition. Combust Explos Shock Waves 39:51–58CrossRef Korchagin MA, Grigor’eva TF, Bokhonov BB, Sharafutdinov MR, Barinova AP, Lyakhov NZ (2003) Solid-state combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product composition. Combust Explos Shock Waves 39:51–58CrossRef
104.
Zurück zum Zitat Korchagin MA, Grigor’eva TF, Bokhonov BB, Sharafutdinov MR, Barinova AP, Lyakhov NZ (2003) Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition. Combust Explos Shock Waves 39:43–50CrossRef Korchagin MA, Grigor’eva TF, Bokhonov BB, Sharafutdinov MR, Barinova AP, Lyakhov NZ (2003) Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition. Combust Explos Shock Waves 39:43–50CrossRef
105.
Zurück zum Zitat Mason BA, Groven LJ, Son SF (2013) The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites. J Appl Phys 114:113501/113501–113501/113507CrossRef Mason BA, Groven LJ, Son SF (2013) The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites. J Appl Phys 114:113501/113501–113501/113507CrossRef
106.
Zurück zum Zitat Nepapushev AA, Kirakosyan KG, Moskovskikh DO, Kharatyan SL, Rogachev AS, Mukasyan AS (2015) Influence of high-energy ball milling on reaction kinetics in the Ni–Al system: an electrothermorgaphic study. Int J Self Propag High Temp Synth 24:21–28CrossRef Nepapushev AA, Kirakosyan KG, Moskovskikh DO, Kharatyan SL, Rogachev AS, Mukasyan AS (2015) Influence of high-energy ball milling on reaction kinetics in the Ni–Al system: an electrothermorgaphic study. Int J Self Propag High Temp Synth 24:21–28CrossRef
107.
Zurück zum Zitat Rogachev AS, Moskovskikh DO, Nepapushev AA, Sviridova TA, Vadchenko SG, Rogachev SA, Mukasyan AS (2015) Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures. Powder Technol 274:44–52CrossRef Rogachev AS, Moskovskikh DO, Nepapushev AA, Sviridova TA, Vadchenko SG, Rogachev SA, Mukasyan AS (2015) Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures. Powder Technol 274:44–52CrossRef
108.
Zurück zum Zitat Rogachev AS, Shkodich NF, Vadchenko SG, Baras F, Kovalev DY, Rouvimov S, Nepapushev AA, Mukasyan AS (2013) Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J Alloys Compd 577:600–605CrossRef Rogachev AS, Shkodich NF, Vadchenko SG, Baras F, Kovalev DY, Rouvimov S, Nepapushev AA, Mukasyan AS (2013) Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J Alloys Compd 577:600–605CrossRef
109.
Zurück zum Zitat White JDE, Reeves RV, Son SF, Mukasyan AS (2009) Thermal explosion in Ni–Al system: influence of mechanical activation. J Phys Chem A 113:13541–13547CrossRef White JDE, Reeves RV, Son SF, Mukasyan AS (2009) Thermal explosion in Ni–Al system: influence of mechanical activation. J Phys Chem A 113:13541–13547CrossRef
110.
Zurück zum Zitat Silva G, Ramos ECT, Ramos AS (2008) Effect of milling parameters on the TiB and TiB2 formation in Ti-50at%B and Ti-66at%B powders. Mater Sci Forum 591–593:135–140CrossRef Silva G, Ramos ECT, Ramos AS (2008) Effect of milling parameters on the TiB and TiB2 formation in Ti-50at%B and Ti-66at%B powders. Mater Sci Forum 591–593:135–140CrossRef
111.
Zurück zum Zitat Blobaum KJ, Van Heerden D, Gavens AJ, Weihs TP (2003) Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater 51:3871–3884CrossRef Blobaum KJ, Van Heerden D, Gavens AJ, Weihs TP (2003) Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater 51:3871–3884CrossRef
112.
Zurück zum Zitat Blobaum KJ, Wagner AJ, Plitzko JM, Van Heerden D, Fairbrother DH, Weihs TP (2003) Investigating the reaction path and growth kinetics in CuO x /Al multilayer foils. J Appl Phys 94:2923–2929CrossRef Blobaum KJ, Wagner AJ, Plitzko JM, Van Heerden D, Fairbrother DH, Weihs TP (2003) Investigating the reaction path and growth kinetics in CuO x /Al multilayer foils. J Appl Phys 94:2923–2929CrossRef
113.
Zurück zum Zitat Thavaselvam D, Vijayaraghavan R (2010) Biological warfare agents. J Pharm Bioallied Sci 2:179–188CrossRef Thavaselvam D, Vijayaraghavan R (2010) Biological warfare agents. J Pharm Bioallied Sci 2:179–188CrossRef
114.
Zurück zum Zitat Ermoline A, Aly Y, Trunov MA, Schoenitz M, Dreizin EL (2010) Preparation and characterization of granular hybrid reactive materials. Int J Energ Mater Chem Propuls 9:267–284 Ermoline A, Aly Y, Trunov MA, Schoenitz M, Dreizin EL (2010) Preparation and characterization of granular hybrid reactive materials. Int J Energ Mater Chem Propuls 9:267–284
115.
Zurück zum Zitat Aly Y, Hoffman VK, Schoenitz M, Dreizin EL (2013) Preparation, ignition, and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. In: Materials research society symposium proceedings, vol 1521, pp 43–48 Aly Y, Hoffman VK, Schoenitz M, Dreizin EL (2013) Preparation, ignition, and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. In: Materials research society symposium proceedings, vol 1521, pp 43–48
116.
Zurück zum Zitat Ward TS, Trunov MA, Schoenitz M, Dreizin EL (2006) Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. Int J Heat Mass Transf 49:4943–4954CrossRef Ward TS, Trunov MA, Schoenitz M, Dreizin EL (2006) Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. Int J Heat Mass Transf 49:4943–4954CrossRef
117.
Zurück zum Zitat Jian G, Piekiel NW, Zachariah MR (2012) Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: a mechanistic study. J Phys Chem C 116:26881–26887CrossRef Jian G, Piekiel NW, Zachariah MR (2012) Time-resolved mass spectrometry of nano-Al and nano-Al/CuO thermite under rapid heating: a mechanistic study. J Phys Chem C 116:26881–26887CrossRef
118.
Zurück zum Zitat Sullivan KT, Piekiel NW, Chowdhury S, Wu C, Zachariah MR, Johnson CE (2011) Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system. Combust Sci Technol 183:285–302CrossRef Sullivan KT, Piekiel NW, Chowdhury S, Wu C, Zachariah MR, Johnson CE (2011) Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system. Combust Sci Technol 183:285–302CrossRef
119.
Zurück zum Zitat Dreizin EL, Badiola C, Zhang S, Aly Y (2011) Particle combustion dynamics of metal-based reactive materials. Int J Energ Mater Chem Propuls 10:22 Dreizin EL, Badiola C, Zhang S, Aly Y (2011) Particle combustion dynamics of metal-based reactive materials. Int J Energ Mater Chem Propuls 10:22
120.
Zurück zum Zitat Bazyn T, Glumac N, Krier H, Ward TS, Schoenitz M, Dreizin EL (2007) Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combust Sci Technol 179:457–476CrossRef Bazyn T, Glumac N, Krier H, Ward TS, Schoenitz M, Dreizin EL (2007) Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combust Sci Technol 179:457–476CrossRef
121.
Zurück zum Zitat Dreizin EL, Schoenitz M (2015) Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Prog Energy Combust Sci 50:81–105CrossRef Dreizin EL, Schoenitz M (2015) Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Prog Energy Combust Sci 50:81–105CrossRef
122.
Zurück zum Zitat Zhu X, Schoenitz M, Dreizin EL (2006) Oxidation of mechanically alloyed Al-rich Al–Ti powders. Oxid Met 65:357–376CrossRef Zhu X, Schoenitz M, Dreizin EL (2006) Oxidation of mechanically alloyed Al-rich Al–Ti powders. Oxid Met 65:357–376CrossRef
123.
Zurück zum Zitat Umbrajkar SM, Chen CM, Schoenitz M, Dreizin EL (2008) On problems of isoconversion data processing for reactions in Al-rich Al–MoO3 thermites. Thermochim Acta 477:1–6CrossRef Umbrajkar SM, Chen CM, Schoenitz M, Dreizin EL (2008) On problems of isoconversion data processing for reactions in Al-rich Al–MoO3 thermites. Thermochim Acta 477:1–6CrossRef
124.
Zurück zum Zitat Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Exothermic reactions in Al–CuO nanocomposites. Thermochim Acta 451:34–43CrossRef Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Exothermic reactions in Al–CuO nanocomposites. Thermochim Acta 451:34–43CrossRef
125.
Zurück zum Zitat Korchagin MA, Filimonov VY, Smirnov EV, Lyakhov NZ (2009) Thermal explosion in mechanoactivated 3Ni + Al mixtures. Int J Self Propag High Temp Synth 18:133–136CrossRef Korchagin MA, Filimonov VY, Smirnov EV, Lyakhov NZ (2009) Thermal explosion in mechanoactivated 3Ni + Al mixtures. Int J Self Propag High Temp Synth 18:133–136CrossRef
126.
Zurück zum Zitat Reeves RV, Mukasyan AS, Son SF (2010) Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems. J Phys Chem C 114:14772–14780CrossRef Reeves RV, Mukasyan AS, Son SF (2010) Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems. J Phys Chem C 114:14772–14780CrossRef
127.
Zurück zum Zitat Vadchenko SG, Boyarchenko OD, Shkodich NF, Rogachev AS (2013) Thermal explosion in various Ni–Al Systems: effect of mechanical activation. Int J Self Propag High Temp Synth 22:60–64CrossRef Vadchenko SG, Boyarchenko OD, Shkodich NF, Rogachev AS (2013) Thermal explosion in various Ni–Al Systems: effect of mechanical activation. Int J Self Propag High Temp Synth 22:60–64CrossRef
128.
Zurück zum Zitat Shteinberg AS, Lin YC, Son SF, Mukasyan AS (2010) Kinetics of high temperature reaction in Ni–Al system: influence of mechanical activation. J Phys Chem A 114:6111–6116CrossRef Shteinberg AS, Lin YC, Son SF, Mukasyan AS (2010) Kinetics of high temperature reaction in Ni–Al system: influence of mechanical activation. J Phys Chem A 114:6111–6116CrossRef
129.
Zurück zum Zitat Cardoso KR, Rodrigues CAD, Botta FWJ (2004) Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater Sci Eng A 375–377:1201–1205CrossRef Cardoso KR, Rodrigues CAD, Botta FWJ (2004) Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater Sci Eng A 375–377:1201–1205CrossRef
130.
Zurück zum Zitat Scudino S, Sakaliyska M, Surreddi KB, Eckert J (2009) Mechanical alloying and milling of Al–Mg alloys. J Alloys Compd 483:2–7CrossRef Scudino S, Sakaliyska M, Surreddi KB, Eckert J (2009) Mechanical alloying and milling of Al–Mg alloys. J Alloys Compd 483:2–7CrossRef
131.
Zurück zum Zitat Schoenitz M, Dreizin EL, Shtessel E (2003) Constant volume explosions of aerosols of metallic mechanical alloys and powder blends. J Propuls Power 19:405–412CrossRef Schoenitz M, Dreizin EL, Shtessel E (2003) Constant volume explosions of aerosols of metallic mechanical alloys and powder blends. J Propuls Power 19:405–412CrossRef
132.
Zurück zum Zitat Schoenitz M, Umbrajkar S, Dreizin EL (2007) Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites. J Propuls Power 23:683–687CrossRef Schoenitz M, Umbrajkar S, Dreizin EL (2007) Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites. J Propuls Power 23:683–687CrossRef
133.
Zurück zum Zitat Stamatis D, Dreizin EL, Higa K (2011) Thermal initiation of Al–MoO3 nanocomposite materials prepared by different methods. J Propuls Power 27:1079–1087CrossRef Stamatis D, Dreizin EL, Higa K (2011) Thermal initiation of Al–MoO3 nanocomposite materials prepared by different methods. J Propuls Power 27:1079–1087CrossRef
134.
Zurück zum Zitat Abraham A, Zhong Z, Liu R, Grinshpun SA, Yermakov M, Indugula R, Schoenitz M, Dreizin EL (2016) Preparation, ignition and combustion of Mg·S reactive nanocomposites. Combust Sci Technol 188(8):1345–1364CrossRef Abraham A, Zhong Z, Liu R, Grinshpun SA, Yermakov M, Indugula R, Schoenitz M, Dreizin EL (2016) Preparation, ignition and combustion of Mg·S reactive nanocomposites. Combust Sci Technol 188(8):1345–1364CrossRef
135.
Zurück zum Zitat Stamatis D, Ermoline A, Dreizin EL (2012) A multi-step reaction model for ignition of fully-dense Al·CuO nanocomposite powders. Combust Theor Model 16:976–993CrossRef Stamatis D, Ermoline A, Dreizin EL (2012) A multi-step reaction model for ignition of fully-dense Al·CuO nanocomposite powders. Combust Theor Model 16:976–993CrossRef
136.
Zurück zum Zitat Williams RA, Schoenitz M, Ermoline A, Dreizin EL (2012) On gas release by thermally-initiated fully-dense 2Al·3CuO nanocomposite powder. Int J Energ Mater Chem Propuls 11:275–292 Williams RA, Schoenitz M, Ermoline A, Dreizin EL (2012) On gas release by thermally-initiated fully-dense 2Al·3CuO nanocomposite powder. Int J Energ Mater Chem Propuls 11:275–292
137.
Zurück zum Zitat Williams RA, Patel JV, Ermoline A, Schoenitz M, Dreizin EL (2013) Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust Flame 160:734–741CrossRef Williams RA, Patel JV, Ermoline A, Schoenitz M, Dreizin EL (2013) Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust Flame 160:734–741CrossRef
138.
Zurück zum Zitat Shaw WL, Dlott DD, Williams RA, Dreizin EL (2014) Ignition of nanocomposite thermites by electric spark and shock wave. Propellants Explos Pyrotech 39:444–453CrossRef Shaw WL, Dlott DD, Williams RA, Dreizin EL (2014) Ignition of nanocomposite thermites by electric spark and shock wave. Propellants Explos Pyrotech 39:444–453CrossRef
139.
Zurück zum Zitat Williams RA, Patel JV, Dreizin EL (2014) Ignition of fully dense nanocomposite thermite powders by an electric spark. J Propuls Power 30(2):765–774CrossRef Williams RA, Patel JV, Dreizin EL (2014) Ignition of fully dense nanocomposite thermite powders by an electric spark. J Propuls Power 30(2):765–774CrossRef
140.
Zurück zum Zitat Schoen JC, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L (2002) Disordered systems on various time scales: a-Si3B3N7 and homogeneous sintering. Los Alamos Natl Lab, Prepr Arch, Condens Matter, pp 1–22. arXiv:cond-mat/0212279 Schoen JC, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L (2002) Disordered systems on various time scales: a-Si3B3N7 and homogeneous sintering. Los Alamos Natl Lab, Prepr Arch, Condens Matter, pp 1–22. arXiv:​cond-mat/​0212279
141.
Zurück zum Zitat Chakraborty P, Zachariah MR (2014) Do nanoenergetic particles remain nano-sized during combustion? Combust Flame 161:1408–1416CrossRef Chakraborty P, Zachariah MR (2014) Do nanoenergetic particles remain nano-sized during combustion? Combust Flame 161:1408–1416CrossRef
142.
Zurück zum Zitat Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, Oxford Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, Oxford
Metadaten
Titel
Mechanochemically prepared reactive and energetic materials: a review
verfasst von
Edward L. Dreizin
Mirko Schoenitz
Publikationsdatum
21.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0912-1

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science 20/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.