Skip to main content
Erschienen in: Journal of Materials Science 13/2017

28.03.2017 | Original Paper

Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO2 nanocomposites

verfasst von: Kamarajan Thiyagarajan, Kandasamy Sivakumar

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reduced graphene oxide (rGO)–SnO2 nanocomposites have been successfully prepared by one-spot facile hydrothermal method. The nanostructures of the samples were analytically inspected and found that SnO2 are evenly anchored on the surface of rGO sheets. The presence of surface defects was identified by spectroscopic techniques. The EPR results confirmed the presence of singly charged oxygen vacancies on the surface of rGO–SnO2 nanocomposites and found to be accountable for its room temperature ferromagnetism. The ferromagnetic behavior (coercivity, saturation magnetization and remanent magnetization) of rGO–SnO2 nanocomposites is suppressed as compared to pure SnO2. The incorporation of rGO sheets notably reduces oxygen vacancies in SnO2 and alters the room temperature ferromagnetism in rGO–SnO2 nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Park N, Yoon M, Berber S, Ihm J, Osawa E, Tomanek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:23 Park N, Yoon M, Berber S, Ihm J, Osawa E, Tomanek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:23
2.
Zurück zum Zitat Karim RM, Shinoda H et al (2013) Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv Funct Mater 23:323–332CrossRef Karim RM, Shinoda H et al (2013) Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv Funct Mater 23:323–332CrossRef
3.
Zurück zum Zitat Novoselov SK, Geim KA et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov SK, Geim KA et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
4.
Zurück zum Zitat Li L, Qin R et al (2011) Functionalized graphene for high-performance two-dimensional spintronics devices. ACS Nano 5:2601–2610CrossRef Li L, Qin R et al (2011) Functionalized graphene for high-performance two-dimensional spintronics devices. ACS Nano 5:2601–2610CrossRef
5.
Zurück zum Zitat Pisani L, Montanari B, Harrison MN (2008) A defective graphene phase predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002CrossRef Pisani L, Montanari B, Harrison MN (2008) A defective graphene phase predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002CrossRef
6.
Zurück zum Zitat Vozmediano HAM, Sancho LPM, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121CrossRef Vozmediano HAM, Sancho LPM, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121CrossRef
7.
Zurück zum Zitat Radovic RL, Bockrath B (2005) On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J Am Chem Soc 127:5917–5927CrossRef Radovic RL, Bockrath B (2005) On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J Am Chem Soc 127:5917–5927CrossRef
8.
Zurück zum Zitat Lundeberg BM, Folk AJ (2009) Spin-resolved quantum interference in graphene. Nat Phys 5:894–897CrossRef Lundeberg BM, Folk AJ (2009) Spin-resolved quantum interference in graphene. Nat Phys 5:894–897CrossRef
9.
Zurück zum Zitat Wang Y, Huang Y et al (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef Wang Y, Huang Y et al (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRef
10.
Zurück zum Zitat Matte RSSH, Subrahmanyam KS, Rao RNC (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113:9982–9985CrossRef Matte RSSH, Subrahmanyam KS, Rao RNC (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113:9982–9985CrossRef
11.
Zurück zum Zitat Palacios JJ, Rossier FJ, Brey L (2008) Vacancy-induced magnetism in graphene and graphene ribbons. Phys Rev B 77:195428CrossRef Palacios JJ, Rossier FJ, Brey L (2008) Vacancy-induced magnetism in graphene and graphene ribbons. Phys Rev B 77:195428CrossRef
12.
Zurück zum Zitat Qin S, Sun P, Di Q, Zhou S, Yang C, Xu Q (2015) Ferromagnetism of three-dimensional graphene Framework. RSC Adv 5:92899–92904CrossRef Qin S, Sun P, Di Q, Zhou S, Yang C, Xu Q (2015) Ferromagnetism of three-dimensional graphene Framework. RSC Adv 5:92899–92904CrossRef
13.
Zurück zum Zitat Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao RNC (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306CrossRef Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao RNC (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306CrossRef
14.
Zurück zum Zitat Chang SG, Forrest J, Kurmaev ZE (2012) Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys Rev B 85:165319CrossRef Chang SG, Forrest J, Kurmaev ZE (2012) Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys Rev B 85:165319CrossRef
15.
Zurück zum Zitat Khann GG, Ghosh S, Mandal K (2012) Origin of room temperature d0 ferromagnetism and characteristic photoluminescence in pristine SnO2 nanowires: a correlation. J Solid State Chem 186:278–282CrossRef Khann GG, Ghosh S, Mandal K (2012) Origin of room temperature d0 ferromagnetism and characteristic photoluminescence in pristine SnO2 nanowires: a correlation. J Solid State Chem 186:278–282CrossRef
16.
Zurück zum Zitat Sarkar A, Sanyal D, Nath P, Chakrabarti M, Pal S, Chattopadhyay S, Jana D, Asokan K (2015) Defect driven ferromagnetism in SnO2: a combined study using density functional theory and positron annihilation spectroscopy. RSC Adv 5:1148–1152CrossRef Sarkar A, Sanyal D, Nath P, Chakrabarti M, Pal S, Chattopadhyay S, Jana D, Asokan K (2015) Defect driven ferromagnetism in SnO2: a combined study using density functional theory and positron annihilation spectroscopy. RSC Adv 5:1148–1152CrossRef
17.
Zurück zum Zitat Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh PK (2009) Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRef Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh PK (2009) Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRef
18.
Zurück zum Zitat Yang AJ, Xue Y, Zhang Y et al (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811CrossRef Yang AJ, Xue Y, Zhang Y et al (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811CrossRef
19.
Zurück zum Zitat Zheng Z, Feng J, Zong Y et al (2015) Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C 3:4452–4463CrossRef Zheng Z, Feng J, Zong Y et al (2015) Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C 3:4452–4463CrossRef
20.
Zurück zum Zitat Soofivand F, Niasari SM (2015) Co3O4/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures. RSC Adv 5:64346–64353CrossRef Soofivand F, Niasari SM (2015) Co3O4/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures. RSC Adv 5:64346–64353CrossRef
21.
Zurück zum Zitat Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22:3471–3477CrossRef Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22:3471–3477CrossRef
22.
Zurück zum Zitat Garcia MA, Merino JM, Fernndez PE et al (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7:1489–1494CrossRef Garcia MA, Merino JM, Fernndez PE et al (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7:1489–1494CrossRef
23.
Zurück zum Zitat Chaboy J, Boada R, Piquer C et al (2010) Evidence of intrinsic magnetism in capped ZnO nanoparticles. Phys Rev B 82:064411CrossRef Chaboy J, Boada R, Piquer C et al (2010) Evidence of intrinsic magnetism in capped ZnO nanoparticles. Phys Rev B 82:064411CrossRef
24.
Zurück zum Zitat Ghosh S, Das K, Chakrabarti K, De SK (2013) Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots. Dalton Trans 42:3434–3446CrossRef Ghosh S, Das K, Chakrabarti K, De SK (2013) Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots. Dalton Trans 42:3434–3446CrossRef
25.
Zurück zum Zitat Prakash A, Misra KS, Bahadur D (2013) The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods. Nanotechnology 24:095705CrossRef Prakash A, Misra KS, Bahadur D (2013) The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods. Nanotechnology 24:095705CrossRef
26.
Zurück zum Zitat Marcano CD, Kosynkin VD et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano CD, Kosynkin VD et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
27.
Zurück zum Zitat Zhang Z, Zou R, Song G, Yu L, Chen Z, Hu J (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21:17360–17365CrossRef Zhang Z, Zou R, Song G, Yu L, Chen Z, Hu J (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21:17360–17365CrossRef
28.
Zurück zum Zitat Wang Q, Wu X, Wang L, Chen Z, Wang S (2014) Graphene–SnO2 nanocomposites decorated with quantum tunneling junctions: preparation, strategies, microstructures and formation mechanism. Phys Chem Chem Phys 16:19351–19357CrossRef Wang Q, Wu X, Wang L, Chen Z, Wang S (2014) Graphene–SnO2 nanocomposites decorated with quantum tunneling junctions: preparation, strategies, microstructures and formation mechanism. Phys Chem Chem Phys 16:19351–19357CrossRef
29.
Zurück zum Zitat Liu ZL, Li HT et al (2012) Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J Raman Spectrosc 43:1423–1426CrossRef Liu ZL, Li HT et al (2012) Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J Raman Spectrosc 43:1423–1426CrossRef
30.
Zurück zum Zitat Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645CrossRef Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645CrossRef
31.
Zurück zum Zitat Hu D, Han B, Han R, Deng S et al (2014) SnO2 nanorods based sensing material as an isopropanol vapor sensor. New J Chem 38:2443–2450CrossRef Hu D, Han B, Han R, Deng S et al (2014) SnO2 nanorods based sensing material as an isopropanol vapor sensor. New J Chem 38:2443–2450CrossRef
32.
Zurück zum Zitat Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975–979CrossRef Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975–979CrossRef
33.
Zurück zum Zitat Choi JS, Jang HB, Lee JS et al (2014) Detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6:2588–2597CrossRef Choi JS, Jang HB, Lee JS et al (2014) Detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6:2588–2597CrossRef
34.
Zurück zum Zitat Li Y, Lv X, Lu J, Li J (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114:21770–21774CrossRef Li Y, Lv X, Lu J, Li J (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114:21770–21774CrossRef
35.
Zurück zum Zitat Kim WT, Lee UD, Yoon SY (2000) Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J Appl Phys 88:3759CrossRef Kim WT, Lee UD, Yoon SY (2000) Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J Appl Phys 88:3759CrossRef
36.
Zurück zum Zitat Ghosh G, Khan GG, Mandal K (2012) Defect-driven magnetism in luminescent n/p-type pristine and Gd-substituted SnO2 nanocrystalline thin films. ACS Appl Mater Interfaces 4:2048–2056CrossRef Ghosh G, Khan GG, Mandal K (2012) Defect-driven magnetism in luminescent n/p-type pristine and Gd-substituted SnO2 nanocrystalline thin films. ACS Appl Mater Interfaces 4:2048–2056CrossRef
37.
Zurück zum Zitat Ding J, Yan X, Li J, Shen B, Yang J, Chen J, Xue Q (2011) Enhancement of field emission and photoluminescence properties of graphene–SnO2 composite nanostructures. ACS Appl Mater Interfaces 3:4299–4305CrossRef Ding J, Yan X, Li J, Shen B, Yang J, Chen J, Xue Q (2011) Enhancement of field emission and photoluminescence properties of graphene–SnO2 composite nanostructures. ACS Appl Mater Interfaces 3:4299–4305CrossRef
38.
Zurück zum Zitat Canevali C, Chiodini N, Nola DP, Morazzoni F, Scottia R, Bianchib LC (1997) Surface reactivity of SnO2 obtained by sol–gel type condensation: interaction with inert, combustible gases, vapour-phase H2O and air, as revealed by electron paramagnetic resonance spectroscopy. J Mater Chem 7:997–1002CrossRef Canevali C, Chiodini N, Nola DP, Morazzoni F, Scottia R, Bianchib LC (1997) Surface reactivity of SnO2 obtained by sol–gel type condensation: interaction with inert, combustible gases, vapour-phase H2O and air, as revealed by electron paramagnetic resonance spectroscopy. J Mater Chem 7:997–1002CrossRef
39.
Zurück zum Zitat Rao SS, Jammalamadaka NS, Stesmans A, Moshchalkov VV (2012) Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons. Nano Lett 12:1210–1217CrossRef Rao SS, Jammalamadaka NS, Stesmans A, Moshchalkov VV (2012) Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons. Nano Lett 12:1210–1217CrossRef
40.
Zurück zum Zitat Aragon HF, Coaquira HAJ, Hidalgo P et al (2010) Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J Phys: Condens Matter 22:496003 Aragon HF, Coaquira HAJ, Hidalgo P et al (2010) Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J Phys: Condens Matter 22:496003
41.
Zurück zum Zitat Chetri P, Choudhury B, Choudhury A (2014) Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study. J Mater Chem C 2:9294–9302CrossRef Chetri P, Choudhury B, Choudhury A (2014) Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study. J Mater Chem C 2:9294–9302CrossRef
42.
Zurück zum Zitat Leslie-Pelecky DL (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783CrossRef Leslie-Pelecky DL (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783CrossRef
43.
Zurück zum Zitat Shi S, Gao D, Xu Q, Yang Xue D (2014) Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Adv 4:45467–45472CrossRef Shi S, Gao D, Xu Q, Yang Xue D (2014) Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Adv 4:45467–45472CrossRef
44.
Zurück zum Zitat Sun P, Wang K et al (2014) Magnetic transitions in graphene derivatives. Nano Res 7:1507–1518CrossRef Sun P, Wang K et al (2014) Magnetic transitions in graphene derivatives. Nano Res 7:1507–1518CrossRef
45.
Zurück zum Zitat Bagani K, Ray KM et al (2014) Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J Phys Chem C 118:13254–13259CrossRef Bagani K, Ray KM et al (2014) Contrasting magnetic properties of thermally and chemically reduced graphene oxide. J Phys Chem C 118:13254–13259CrossRef
46.
Zurück zum Zitat Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520CrossRef Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520CrossRef
47.
Zurück zum Zitat Gao R, Zhang H, Yuan S et al (2016) Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto the graphene nanosheets for improved lithium storage capability. RSC Adv 6:4116–4127CrossRef Gao R, Zhang H, Yuan S et al (2016) Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto the graphene nanosheets for improved lithium storage capability. RSC Adv 6:4116–4127CrossRef
Metadaten
Titel
Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO2 nanocomposites
verfasst von
Kamarajan Thiyagarajan
Kandasamy Sivakumar
Publikationsdatum
28.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1016-7

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.