Skip to main content
Erschienen in: Journal of Materials Science 14/2017

19.04.2017 | Original Paper

Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering

verfasst von: P. Cavaliere, B. Sadeghi, A. Shabani

Erschienen in: Journal of Materials Science | Ausgabe 14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper analyses the effect of 0.5 and 1% of carbon nanotubes (CNTs) addition on the mechanical and microstructural behavior of Al-based metal matrix composites produced via SPS. The results show that the carbon nanotubes addition results in an increase in porosity and an increase in strength with respect to pure SPSed aluminum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al–nano Al2O3 composites. Procedia Mater Sci 6:567–589CrossRef Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al–nano Al2O3 composites. Procedia Mater Sci 6:567–589CrossRef
2.
Zurück zum Zitat Khorshid MT, Jahromi SJ, Moshksar M (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31:3880–3884CrossRef Khorshid MT, Jahromi SJ, Moshksar M (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31:3880–3884CrossRef
3.
Zurück zum Zitat Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced aluminum matrix composites. Mater Sci Eng A428:159–168CrossRef Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced aluminum matrix composites. Mater Sci Eng A428:159–168CrossRef
4.
Zurück zum Zitat Casati R, Bonollo F, Dellasega D, Fabrizi A, Timelli G, Tuissi A, Vedani M (2014) Ex situ Al–Al 2 O 3 ultrafine grained nanocomposites produced via powder metallurgy. J Alloy Compd 615:S386–S388CrossRef Casati R, Bonollo F, Dellasega D, Fabrizi A, Timelli G, Tuissi A, Vedani M (2014) Ex situ Al–Al 2 O 3 ultrafine grained nanocomposites produced via powder metallurgy. J Alloy Compd 615:S386–S388CrossRef
5.
Zurück zum Zitat Tjong SC (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652CrossRef Tjong SC (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652CrossRef
6.
Zurück zum Zitat Kang YC, Chan SLI (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85:438–443CrossRef Kang YC, Chan SLI (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85:438–443CrossRef
7.
Zurück zum Zitat Sweet G, Brochu M, Hexemer R, Donaldson I, Bishop D (2015) Consolidationof aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133CrossRef Sweet G, Brochu M, Hexemer R, Donaldson I, Bishop D (2015) Consolidationof aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133CrossRef
8.
Zurück zum Zitat Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew R (2008) Development of new Al-based nanocomposites by mechanical alloying. Mater Sci Eng A 480:392–396CrossRef Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew R (2008) Development of new Al-based nanocomposites by mechanical alloying. Mater Sci Eng A 480:392–396CrossRef
9.
Zurück zum Zitat Suryanarayana C (2011) Synthesis of nanocomposites by mechanical alloying. J Alloy Compd 509:S229–S234CrossRef Suryanarayana C (2011) Synthesis of nanocomposites by mechanical alloying. J Alloy Compd 509:S229–S234CrossRef
10.
Zurück zum Zitat Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R29:49–113CrossRef Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R29:49–113CrossRef
11.
Zurück zum Zitat Peng Y, Zhi M, Tjong SC (2005) Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and Tic submicron particles. Mater Chem Phys 93:109–116CrossRef Peng Y, Zhi M, Tjong SC (2005) Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and Tic submicron particles. Mater Chem Phys 93:109–116CrossRef
12.
Zurück zum Zitat German R (1994) Powder metallurgy, 2nd edn. Wiley, New York, pp 367–371 German R (1994) Powder metallurgy, 2nd edn. Wiley, New York, pp 367–371
13.
Zurück zum Zitat Vaucher S, Beffort O (2001) Bonding and interface formation in metal matrix composites, volume 9, MMC-Assess Thematic Network Vaucher S, Beffort O (2001) Bonding and interface formation in metal matrix composites, volume 9, MMC-Assess Thematic Network
14.
Zurück zum Zitat Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48:2535–2542CrossRef Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48:2535–2542CrossRef
15.
Zurück zum Zitat Ghasali E, Alizadeh M, Ebadzadeh T (2016) Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B 4 C composite. J Alloy Compd 655:93–98CrossRef Ghasali E, Alizadeh M, Ebadzadeh T (2016) Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B 4 C composite. J Alloy Compd 655:93–98CrossRef
16.
Zurück zum Zitat Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloy Compd 666:366–371CrossRef Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloy Compd 666:366–371CrossRef
17.
Zurück zum Zitat Wolff C, Mercier S, Couque H, Molinari A (2012) Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mech Mater 49:72–91CrossRef Wolff C, Mercier S, Couque H, Molinari A (2012) Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mech Mater 49:72–91CrossRef
18.
Zurück zum Zitat Liu Z-F, Zhang Z-H, Lu J-F, Korznikov AV, Korznikova E, Wang F-C (2014) Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater Des 64:625–630CrossRef Liu Z-F, Zhang Z-H, Lu J-F, Korznikov AV, Korznikova E, Wang F-C (2014) Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater Des 64:625–630CrossRef
19.
Zurück zum Zitat Munir ZA, Quach VD (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19CrossRef Munir ZA, Quach VD (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19CrossRef
20.
Zurück zum Zitat Firesteina KL, Corthay S, Steinman AE, Matveev AT, Kovalskii AM, Sukhorukova IV, Golberg D, Shtansky DV (2017) High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al–BN powder mixtures. Mater Sci Eng A681:1–9CrossRef Firesteina KL, Corthay S, Steinman AE, Matveev AT, Kovalskii AM, Sukhorukova IV, Golberg D, Shtansky DV (2017) High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al–BN powder mixtures. Mater Sci Eng A681:1–9CrossRef
21.
Zurück zum Zitat Babu K, Kallip K, Leparoux M, AlOgab KA, Maeder X, Rojas Dasilva YA (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544CrossRef Babu K, Kallip K, Leparoux M, AlOgab KA, Maeder X, Rojas Dasilva YA (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544CrossRef
22.
Zurück zum Zitat Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226CrossRef Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226CrossRef
23.
Zurück zum Zitat Mula S, Mondal K, Ghosh S, Pabi SK (2010) Structure and mechanical properties of Al–Ni–Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering. Mater Sci Eng A527:3757–3763CrossRef Mula S, Mondal K, Ghosh S, Pabi SK (2010) Structure and mechanical properties of Al–Ni–Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering. Mater Sci Eng A527:3757–3763CrossRef
24.
Zurück zum Zitat Zhanga J, Shi H, Cai M, Liu L, Zha P (2009) The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process. Mater Sci Eng A527:218–224CrossRef Zhanga J, Shi H, Cai M, Liu L, Zha P (2009) The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process. Mater Sci Eng A527:218–224CrossRef
25.
Zurück zum Zitat Sweet GA, Brochu M, Hexemer RL (2015) Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133CrossRef Sweet GA, Brochu M, Hexemer RL (2015) Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133CrossRef
26.
Zurück zum Zitat Daoush W, Francis A, Lin Y, German R (2015) An exploratory investigation on the in situ synthesis of SiC/AlN/Al composites by spark plasma sintering. J Alloy Compd 622:458–462CrossRef Daoush W, Francis A, Lin Y, German R (2015) An exploratory investigation on the in situ synthesis of SiC/AlN/Al composites by spark plasma sintering. J Alloy Compd 622:458–462CrossRef
27.
Zurück zum Zitat Sadeghian Z, Lotfi B, Enayati MH, Beiss P (2011) Microstructural and mechanical evaluation of Al–TiB2 nanostructured composite fabricated by mechanical alloying. J Alloy Compd 509:7758–7763CrossRef Sadeghian Z, Lotfi B, Enayati MH, Beiss P (2011) Microstructural and mechanical evaluation of Al–TiB2 nanostructured composite fabricated by mechanical alloying. J Alloy Compd 509:7758–7763CrossRef
28.
Zurück zum Zitat Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2012) Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering. Compos Part B 43:1557–1563CrossRef Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2012) Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering. Compos Part B 43:1557–1563CrossRef
29.
Zurück zum Zitat Durowoju MO, Sadiku ER, Diouf S, Shongwe MB, Olubambi PA (2015) Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles. Powder Technol 284:504–513CrossRef Durowoju MO, Sadiku ER, Diouf S, Shongwe MB, Olubambi PA (2015) Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles. Powder Technol 284:504–513CrossRef
30.
Zurück zum Zitat Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227CrossRef Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227CrossRef
31.
Zurück zum Zitat Devaraj S, Sankaran S, Kumar R (2013) Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt% Cu alloy. Acta Metall Sin 26:761–771CrossRef Devaraj S, Sankaran S, Kumar R (2013) Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt% Cu alloy. Acta Metall Sin 26:761–771CrossRef
32.
Zurück zum Zitat Decker S, Martin S, Krüger L (2016) Influence of powder particle size on the compaction behavior and mechanical properties of a high-alloy austenitic CrMnNi TRIP steel during spark plasma sintering. Metall Mater Trans A47:170–177CrossRef Decker S, Martin S, Krüger L (2016) Influence of powder particle size on the compaction behavior and mechanical properties of a high-alloy austenitic CrMnNi TRIP steel during spark plasma sintering. Metall Mater Trans A47:170–177CrossRef
33.
Zurück zum Zitat Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:s1CrossRef Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:s1CrossRef
34.
Zurück zum Zitat Saheb N, Khan MS, Hakeem AS (2015) Effect of processing on mechanically alloyed and spark plasma sintered Al–Al2O3 nanocomposites. J Nanomater 16:609824 Saheb N, Khan MS, Hakeem AS (2015) Effect of processing on mechanically alloyed and spark plasma sintered Al–Al2O3 nanocomposites. J Nanomater 16:609824
35.
Zurück zum Zitat Grácio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Mechanical behavior of Al–SiC nanocomposites produced by ball milling and spark plasma sintering. Metall Mater Trans A44:5259–5269CrossRef Grácio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Mechanical behavior of Al–SiC nanocomposites produced by ball milling and spark plasma sintering. Metall Mater Trans A44:5259–5269CrossRef
36.
Zurück zum Zitat Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRef Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRef
38.
Zurück zum Zitat He F, Han Q, Jackson MJ (2008) Nanoparticulate reinforced metal matrix nanocomposites—a review. Int J Nanoparticles 1:301–309CrossRef He F, Han Q, Jackson MJ (2008) Nanoparticulate reinforced metal matrix nanocomposites—a review. Int J Nanoparticles 1:301–309CrossRef
39.
Zurück zum Zitat Asgharzadeh H, Simchi A, Kim HS (2011) Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater Sci Eng A528:3981–3989CrossRef Asgharzadeh H, Simchi A, Kim HS (2011) Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater Sci Eng A528:3981–3989CrossRef
40.
Zurück zum Zitat Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K, Wu K (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos Part A 43:1280–1284CrossRef Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K, Wu K (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos Part A 43:1280–1284CrossRef
41.
Zurück zum Zitat Pelleg J (2012) Mechanical properties of materials. Springer, Berlin, pp 197–198 Pelleg J (2012) Mechanical properties of materials. Springer, Berlin, pp 197–198
Metadaten
Titel
Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering
verfasst von
P. Cavaliere
B. Sadeghi
A. Shabani
Publikationsdatum
19.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1086-6

Weitere Artikel der Ausgabe 14/2017

Journal of Materials Science 14/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.