Skip to main content
Erschienen in: Journal of Materials Science 17/2018

30.05.2018 | Chemical routes to materials

Thermally reduced graphene oxide: synthesis, studies and characterization

verfasst von: Ana Elisa Ferreira Oliveira, Guilherme Bettio Braga, César Ricardo Teixeira Tarley, Arnaldo César Pereira

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main purpose of this study is to synthesize reduced graphene oxide (rGO) using graphite (GR) as a starting material. This paper explains didactic step-by-step of the synthesis, the role of each reagent, showing pictures of the entire process and including a well-explained characterization study. The rGO was prepared using modified Hummer’s method, followed by thermal reduction. The materials were characterized from the starting material (GR), through the intermediate material (GO) and finally the material of interest (rGO). Various techniques and procedures were used to characterize the materials such as X-ray diffraction, infrared and Raman spectroscopy, scanning electron microscopy, electrochemical characterization and dispersion analysis. Morphological and structural characterization of the obtained materials suggests that the synthesis and reduction to obtain rGO were effective. The obtained materials were electrochemically evaluated using ferri/ferrocyanide redox probe. The association of chemical oxidation of GR with KMnO4 in the presence of H2SO4 with further thermal reduction makes possible to produce rGO in large scale and with quality as noticed by outstanding electrochemical behavior toward the redox couple [Fe(CN)6]3−/[Fe(CN)6]4− probe.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Progress in materials science graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271CrossRef Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Progress in materials science graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271CrossRef
2.
Zurück zum Zitat Lavender L (2014) Graphene: applications and future uses. The Institute of Physics, London Lavender L (2014) Graphene: applications and future uses. The Institute of Physics, London
3.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
4.
Zurück zum Zitat Bianco A et al (2013) All in the graphene family—a recommended nomenclature for two dimensional carbon materials. Carbon 65:1–6CrossRef Bianco A et al (2013) All in the graphene family—a recommended nomenclature for two dimensional carbon materials. Carbon 65:1–6CrossRef
5.
Zurück zum Zitat Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
6.
Zurück zum Zitat Zarbin AJG, Oliveira MM (2013) Carbon nanostructures (nanotubes and graphene): Quo Vadis? Quim Nova 36(10):1533–1539CrossRef Zarbin AJG, Oliveira MM (2013) Carbon nanostructures (nanotubes and graphene): Quo Vadis? Quim Nova 36(10):1533–1539CrossRef
7.
Zurück zum Zitat Sengupta R et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670CrossRef Sengupta R et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670CrossRef
8.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva AA (2004) Electric field effect in atomically thin carbon films. Science 306(1):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva AA (2004) Electric field effect in atomically thin carbon films. Science 306(1):666–669CrossRef
9.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
10.
Zurück zum Zitat Gao W (2015) Graphene oxide: reduction recipes, spectroscopy and applications. Springer, ChamCrossRef Gao W (2015) Graphene oxide: reduction recipes, spectroscopy and applications. Springer, ChamCrossRef
11.
Zurück zum Zitat Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889CrossRef Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889CrossRef
12.
Zurück zum Zitat Sun JY, Huang KJ, Wei SY, Wu ZW, Ren F (2011) A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf B 84:421CrossRef Sun JY, Huang KJ, Wei SY, Wu ZW, Ren F (2011) A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf B 84:421CrossRef
13.
Zurück zum Zitat Hummers J, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1340CrossRef Hummers J, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1340CrossRef
14.
Zurück zum Zitat Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef
15.
Zurück zum Zitat Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:1–15CrossRef Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:1–15CrossRef
16.
Zurück zum Zitat Kong L, Jiang X, Zeng Y, Zhou T, Shi G (2013) Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine). membranes at reduced graphene oxide modified electrode for imidacloprid determination. Sens Actuat B Chem 185:424–431CrossRef Kong L, Jiang X, Zeng Y, Zhou T, Shi G (2013) Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine). membranes at reduced graphene oxide modified electrode for imidacloprid determination. Sens Actuat B Chem 185:424–431CrossRef
17.
Zurück zum Zitat Pumera M, Ambrosi A, Bonanni A, Khim EL, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29(9):954–965CrossRef Pumera M, Ambrosi A, Bonanni A, Khim EL, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29(9):954–965CrossRef
18.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
19.
Zurück zum Zitat Dimiev AM, Tour J (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068CrossRef Dimiev AM, Tour J (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068CrossRef
20.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef
21.
Zurück zum Zitat Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2008) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2008) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499CrossRef
22.
Zurück zum Zitat Mcallister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J (2007) Expansion of graphite. Chem Mater 19(4):4396–4404CrossRef Mcallister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J (2007) Expansion of graphite. Chem Mater 19(4):4396–4404CrossRef
23.
Zurück zum Zitat Russel JB (1994) Química Geral, 2nd edn. Pearson, São Paulo Russel JB (1994) Química Geral, 2nd edn. Pearson, São Paulo
24.
Zurück zum Zitat Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, Oxford Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, Oxford
25.
Zurück zum Zitat Nonomura Y, Morita Y, Deguchi S, Mukai S (2010) Anomalously stable dispersions of graphite in water/acetone mixtures. J Colloid Interface Sci 346:96–99CrossRef Nonomura Y, Morita Y, Deguchi S, Mukai S (2010) Anomalously stable dispersions of graphite in water/acetone mixtures. J Colloid Interface Sci 346:96–99CrossRef
26.
Zurück zum Zitat Khan M, Al-Marri AH, Khan M, Mohri N, Adil SF, Al-Warthan A, Siddiqui RMH, Alkhathlan HZ, Berger R, Tremelb W, Tahir MN (2014) Pulicaria glutinosa plant extract: a green and ecofriendly reducing agent for the preparation of highly reduced graphene oxide. RSC Adv 4:24119–24125CrossRef Khan M, Al-Marri AH, Khan M, Mohri N, Adil SF, Al-Warthan A, Siddiqui RMH, Alkhathlan HZ, Berger R, Tremelb W, Tahir MN (2014) Pulicaria glutinosa plant extract: a green and ecofriendly reducing agent for the preparation of highly reduced graphene oxide. RSC Adv 4:24119–24125CrossRef
27.
Zurück zum Zitat Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63 Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63
28.
Zurück zum Zitat Bai YL et al (2015) Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform Polym 27(8):997–1006CrossRef Bai YL et al (2015) Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform Polym 27(8):997–1006CrossRef
29.
Zurück zum Zitat Ball DW (2006) Físico-Química, vol 2. Thomson, São Paulo Ball DW (2006) Físico-Química, vol 2. Thomson, São Paulo
30.
Zurück zum Zitat Ewing GW (2009) Métodos instrumentais de análise química, vol 2. Blücher, São Paulo Ewing GW (2009) Métodos instrumentais de análise química, vol 2. Blücher, São Paulo
31.
Zurück zum Zitat Nekahi PH, Haghshenas MD (2014) Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl Surf Sci 295:59–65CrossRef Nekahi PH, Haghshenas MD (2014) Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl Surf Sci 295:59–65CrossRef
32.
Zurück zum Zitat Krishnamurthy G, Namitha RB (2013) Synthesis of structurally novel carbon micro/nanospheres by low temperature-hydrothermal process. J Chil Chem Soc 58(3):1930–1933CrossRef Krishnamurthy G, Namitha RB (2013) Synthesis of structurally novel carbon micro/nanospheres by low temperature-hydrothermal process. J Chil Chem Soc 58(3):1930–1933CrossRef
33.
Zurück zum Zitat Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New YorkCrossRef Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New YorkCrossRef
34.
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 5647(97):4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 5647(97):4477–4482CrossRef
35.
Zurück zum Zitat Klinowski J, He H, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56CrossRef Klinowski J, He H, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56CrossRef
36.
Zurück zum Zitat Yaragalla S, Meera AP, Kalarikkal N, Thomas S (2015) Chemistry associated with natural rubber—graphene nanocomposites and its effect on physical and structural properties. Ind Crops Prod 74:792–802CrossRef Yaragalla S, Meera AP, Kalarikkal N, Thomas S (2015) Chemistry associated with natural rubber—graphene nanocomposites and its effect on physical and structural properties. Ind Crops Prod 74:792–802CrossRef
37.
Zurück zum Zitat Han JH, Cho KW, Lee K-H, Kim H (1998) Porous graphite matrix for chemical heat pumps. Carbon 36(12):1801–1810CrossRef Han JH, Cho KW, Lee K-H, Kim H (1998) Porous graphite matrix for chemical heat pumps. Carbon 36(12):1801–1810CrossRef
38.
Zurück zum Zitat Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid States Ionics 178:877–882CrossRef Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid States Ionics 178:877–882CrossRef
39.
Zurück zum Zitat Vinayan BP, Nagar R, Raman BN, Rajalakshmi KS, Dhathathreyan BS, Ramaprabhu A (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949–9956CrossRef Vinayan BP, Nagar R, Raman BN, Rajalakshmi KS, Dhathathreyan BS, Ramaprabhu A (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949–9956CrossRef
40.
Zurück zum Zitat Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRef Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRef
41.
Zurück zum Zitat Tang Z, Zhang L, Zeng C, Lin T, Guo B (2012) General route to graphene with liquidlike behavior by non-covalent modification. Soft Matter 8(35):9214–9220CrossRef Tang Z, Zhang L, Zeng C, Lin T, Guo B (2012) General route to graphene with liquidlike behavior by non-covalent modification. Soft Matter 8(35):9214–9220CrossRef
42.
Zurück zum Zitat Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150CrossRef Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150CrossRef
43.
Zurück zum Zitat Feng H, Wang X, Wu D (2013) Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res 52:10160–10171CrossRef Feng H, Wang X, Wu D (2013) Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res 52:10160–10171CrossRef
44.
Zurück zum Zitat Sharon M, Sharon M (2015) Graphene: An Introduction to the fundamentals and industrial applications. Scrivener Publishing, BeverlyCrossRef Sharon M, Sharon M (2015) Graphene: An Introduction to the fundamentals and industrial applications. Scrivener Publishing, BeverlyCrossRef
45.
Zurück zum Zitat Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization. Small 9(3):341–350CrossRef Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization. Small 9(3):341–350CrossRef
Metadaten
Titel
Thermally reduced graphene oxide: synthesis, studies and characterization
verfasst von
Ana Elisa Ferreira Oliveira
Guilherme Bettio Braga
César Ricardo Teixeira Tarley
Arnaldo César Pereira
Publikationsdatum
30.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2473-3

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.