Skip to main content
Erschienen in: Journal of Materials Science 22/2018

25.06.2018 | Review

Recent advances and perspectives on starch nanocomposites for packaging applications

verfasst von: Zainab Waheed Abdullah, Yu Dong

Erschienen in: Journal of Materials Science | Ausgabe 22/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Starch nanocomposites are popular and abundant materials in packaging sectors. The aim of this work is to review some of the most popular starch nanocomposite systems that have been used nowadays. Due to a wide range of applicable reinforcements, nanocomposite systems are investigated based on nanofiller type such as nanoclays, polysaccharides and carbonaceous nanofillers. Furthermore, the structures of starch and material preparation methods for their nanocomposites are also mentioned in this review. It is clearly presented that mechanical, thermal and barrier properties of plasticised starch can be improved with well-dispersed nanofillers in starch nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Parra D, Tadini C, Ponce P, Lugao A (2004) Mechanical properties and water vapour transmission in some blends of cassava starch edible films. Carbohyd Polym 58(4):475–481CrossRef Parra D, Tadini C, Ponce P, Lugao A (2004) Mechanical properties and water vapour transmission in some blends of cassava starch edible films. Carbohyd Polym 58(4):475–481CrossRef
2.
Zurück zum Zitat Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782CrossRef Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782CrossRef
3.
Zurück zum Zitat Avella M, Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRef Avella M, Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRef
4.
Zurück zum Zitat Petersson M, Stading M (2005) Water vapour permeability and mechanical properties of mixed starch–monoglyceride films and effect of film forming conditions. Food Hydrocoll 19(1):123–132CrossRef Petersson M, Stading M (2005) Water vapour permeability and mechanical properties of mixed starch–monoglyceride films and effect of film forming conditions. Food Hydrocoll 19(1):123–132CrossRef
5.
Zurück zum Zitat Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starches: characterization, properties, and applications. Taylor & Francis, Boca Raton, pp 205–251 Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starches: characterization, properties, and applications. Taylor & Francis, Boca Raton, pp 205–251
6.
Zurück zum Zitat Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite-properties and processing. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 1–15 Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite-properties and processing. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 1–15
7.
Zurück zum Zitat Famá LM, Goyanes S, Pettarin V, Bernal CR (2015) Mechanical behavior of starch–carbon nanotubes composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 141–171 Famá LM, Goyanes S, Pettarin V, Bernal CR (2015) Mechanical behavior of starch–carbon nanotubes composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 141–171
8.
Zurück zum Zitat García NL, Famá L, D’Accorso NB, Goyanes S (2015) Biodegradable starch nanocomposites. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 17–77 García NL, Famá L, D’Accorso NB, Goyanes S (2015) Biodegradable starch nanocomposites. In: Thakur VK, Thakur MK (eds) Advanced structured materials eco-friendly polymer nanocomposites. Springer, New Delhi, pp 17–77
9.
Zurück zum Zitat Sam ST, Nuradibah MA, Chin KM, Hani N (2015) Current application and challenges on packaging industry based on natural polymer blending. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 163–184 Sam ST, Nuradibah MA, Chin KM, Hani N (2015) Current application and challenges on packaging industry based on natural polymer blending. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 163–184
10.
Zurück zum Zitat Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56(12):1307–1344CrossRef Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol Eng 56(12):1307–1344CrossRef
11.
Zurück zum Zitat Schmitt H, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohyd Polym 89(3):920–927CrossRef Schmitt H, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohyd Polym 89(3):920–927CrossRef
12.
Zurück zum Zitat Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Bioref 3:329–343CrossRef Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Bioref 3:329–343CrossRef
13.
Zurück zum Zitat Khan B, Niazi MB, Samin G, Jahan Z (2016) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):1–16 Khan B, Niazi MB, Samin G, Jahan Z (2016) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):1–16
14.
Zurück zum Zitat Visakh PM (2016) Starch: state-of-the-art, new challenges and opportunities. In: Visakh PM, Yu L (eds) Starch-based blends, composites and nanocomposites. Royal Society of Chemistry, Cambridge, pp 1–16 Visakh PM (2016) Starch: state-of-the-art, new challenges and opportunities. In: Visakh PM, Yu L (eds) Starch-based blends, composites and nanocomposites. Royal Society of Chemistry, Cambridge, pp 1–16
15.
Zurück zum Zitat Paes SS, Yakimets I, Mitchell JR (2008) Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocoll 22(5):788–797CrossRef Paes SS, Yakimets I, Mitchell JR (2008) Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocoll 22(5):788–797CrossRef
16.
Zurück zum Zitat Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohyd Polym 67(3):288–295CrossRef Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohyd Polym 67(3):288–295CrossRef
17.
Zurück zum Zitat Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohyd Polym 69(4):748–755CrossRef Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohyd Polym 69(4):748–755CrossRef
18.
Zurück zum Zitat Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702–711CrossRef Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702–711CrossRef
19.
Zurück zum Zitat Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C 44(3):231–274CrossRef Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C 44(3):231–274CrossRef
20.
Zurück zum Zitat Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecues 11(5):1139–1153CrossRef Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecues 11(5):1139–1153CrossRef
21.
Zurück zum Zitat Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Sci 39(2):151–165CrossRef Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Sci 39(2):151–165CrossRef
22.
Zurück zum Zitat Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohyd Polym 60(2):235–244CrossRef Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zaritzky NE (2005) Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohyd Polym 60(2):235–244CrossRef
23.
Zurück zum Zitat Galdeano MC, Mali S, Grossmann MV, Yamashita F, García MA (2009) Effects of plasticizers on the properties of oat starch films. Mater Sci Eng C 29(2):532–538CrossRef Galdeano MC, Mali S, Grossmann MV, Yamashita F, García MA (2009) Effects of plasticizers on the properties of oat starch films. Mater Sci Eng C 29(2):532–538CrossRef
24.
Zurück zum Zitat Robyt JF (2008) Starch: Structure, properties, chemistry, and enzymology. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1437–1472CrossRef Robyt JF (2008) Starch: Structure, properties, chemistry, and enzymology. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1437–1472CrossRef
25.
Zurück zum Zitat Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starch characterisation, properties and applications. Taylor and Francis Group, New York, pp 205–251 Medeiros ES, Dufresne A, Orts WJ (2010) Starch-based nanocomposites. In: Bertolini AC (ed) Starch characterisation, properties and applications. Taylor and Francis Group, New York, pp 205–251
26.
Zurück zum Zitat Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112CrossRef Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112CrossRef
27.
Zurück zum Zitat Olatunji O (2015) Classification of Natural Polymers. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 1–17 Olatunji O (2015) Classification of Natural Polymers. In: Olatunji O (ed) Natural polymers industry techniques and applications. Springer, New York, pp 1–17
29.
Zurück zum Zitat Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368CrossRef Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368CrossRef
30.
Zurück zum Zitat Rhim J, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci 47(4):411–433CrossRef Rhim J, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci 47(4):411–433CrossRef
31.
Zurück zum Zitat Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303CrossRef Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303CrossRef
32.
Zurück zum Zitat He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohyd Polym 87(4):2706–2711CrossRef He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohyd Polym 87(4):2706–2711CrossRef
33.
Zurück zum Zitat Yoon S, Chough S, Park H (2006) Properties of starch-based blend films using citric acid as additive. II. J Appl Polym Sci 100(3):2554–2560CrossRef Yoon S, Chough S, Park H (2006) Properties of starch-based blend films using citric acid as additive. II. J Appl Polym Sci 100(3):2554–2560CrossRef
34.
Zurück zum Zitat Nyankson E, Olasehinde O, John VT, Gupta RB (2015) Surfactant-loaded halloysite clay nanotube dispersants for crude oil spill remediation. Ind Eng Chem Res 54(38):9328–9341CrossRef Nyankson E, Olasehinde O, John VT, Gupta RB (2015) Surfactant-loaded halloysite clay nanotube dispersants for crude oil spill remediation. Ind Eng Chem Res 54(38):9328–9341CrossRef
36.
Zurück zum Zitat Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohyd Polym 79(3):547–554CrossRef Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohyd Polym 79(3):547–554CrossRef
37.
Zurück zum Zitat Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462CrossRef Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462CrossRef
38.
Zurück zum Zitat Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956CrossRef Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956CrossRef
39.
Zurück zum Zitat Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67(3–4):413–421CrossRef Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67(3–4):413–421CrossRef
40.
Zurück zum Zitat Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef
41.
Zurück zum Zitat Wei L, Hu N, Zhang Y (2010) Synthesis of polymer–mesoporous silica nanocomposites. Materials 3(7):4066–4079CrossRef Wei L, Hu N, Zhang Y (2010) Synthesis of polymer–mesoporous silica nanocomposites. Materials 3(7):4066–4079CrossRef
42.
Zurück zum Zitat Swain SK, Patra SK, Kisku SK (2013) Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polym Compos 35(7):1238–1243CrossRef Swain SK, Patra SK, Kisku SK (2013) Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polym Compos 35(7):1238–1243CrossRef
43.
Zurück zum Zitat Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628CrossRef Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628CrossRef
44.
Zurück zum Zitat Raheel M, Yao K, Gong J, Chen X, Liu D, Lin Y et al (2014) Poly(vinyl alcohol)/GO-MMT nanocomposites: preparation, structure and properties. Chin J Polym Sci 33(2):329–338CrossRef Raheel M, Yao K, Gong J, Chen X, Liu D, Lin Y et al (2014) Poly(vinyl alcohol)/GO-MMT nanocomposites: preparation, structure and properties. Chin J Polym Sci 33(2):329–338CrossRef
45.
Zurück zum Zitat Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) PVA/montmorillonite nanocomposites: development and properties. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. In Tech, Rijeka, pp 29–50 Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) PVA/montmorillonite nanocomposites: development and properties. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. In Tech, Rijeka, pp 29–50
46.
Zurück zum Zitat Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E (2008) A biodegradable polymer nanocomposite: mechanical and barrier properties. Mech Compos Mater 44(1):45–56CrossRef Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E (2008) A biodegradable polymer nanocomposite: mechanical and barrier properties. Mech Compos Mater 44(1):45–56CrossRef
47.
Zurück zum Zitat Chen B, Evans JR (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohyd Polym 61(4):455–463CrossRef Chen B, Evans JR (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohyd Polym 61(4):455–463CrossRef
48.
Zurück zum Zitat Schlemmer D, Angélica RS, Sales MJ (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos Struct 92(9):2066–2070CrossRef Schlemmer D, Angélica RS, Sales MJ (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos Struct 92(9):2066–2070CrossRef
49.
Zurück zum Zitat Llanos JH, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382CrossRef Llanos JH, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382CrossRef
50.
Zurück zum Zitat Park H, Li X, Jin C, Park C, Cho W, Ha C (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558CrossRef Park H, Li X, Jin C, Park C, Cho W, Ha C (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558CrossRef
52.
Zurück zum Zitat Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55(3):573–580CrossRef Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polym Eng Sci 55(3):573–580CrossRef
53.
Zurück zum Zitat Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 132(4):41341. https://doi.org/10.1002/app.41341 CrossRef Schmitt H, Creton N, Prashantha K, Soulestin J, Lacrampe M, Krawczak P (2014) Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. J Appl Polym Sci 132(4):41341. https://​doi.​org/​10.​1002/​app.​41341 CrossRef
54.
Zurück zum Zitat Xie Y, Chang PR, Wang S, Yu J, Ma X (2011) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. Starch composites. Carbohyd Polym 83(1):186–191CrossRef Xie Y, Chang PR, Wang S, Yu J, Ma X (2011) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. Starch composites. Carbohyd Polym 83(1):186–191CrossRef
55.
Zurück zum Zitat Meira SM, Zehetmeyer G, Scheibel JM, Werner JO, Brandelli A (2016) Starch–halloysite nanocomposites containing nisin: characterization and inhibition of Listeria monocytogenes in soft cheese. LWT Food Sci Technol 68:226–234CrossRef Meira SM, Zehetmeyer G, Scheibel JM, Werner JO, Brandelli A (2016) Starch–halloysite nanocomposites containing nisin: characterization and inhibition of Listeria monocytogenes in soft cheese. LWT Food Sci Technol 68:226–234CrossRef
56.
Zurück zum Zitat Huang M, Yu J (2005) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99(1):170–176CrossRef Huang M, Yu J (2005) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99(1):170–176CrossRef
57.
Zurück zum Zitat Cyras VP, Manfredi LB, Ton-That M, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73(1):55–63CrossRef Cyras VP, Manfredi LB, Ton-That M, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73(1):55–63CrossRef
58.
Zurück zum Zitat Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20(6):2981–2989CrossRef Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20(6):2981–2989CrossRef
59.
Zurück zum Zitat Teixeira ED, Pasquini D, Curvelo AA, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78(3):422–431CrossRef Teixeira ED, Pasquini D, Curvelo AA, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78(3):422–431CrossRef
60.
Zurück zum Zitat Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69(3–4):500–506CrossRef Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69(3–4):500–506CrossRef
62.
Zurück zum Zitat Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61:261–268CrossRef Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 61:261–268CrossRef
63.
Zurück zum Zitat Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohyd Polym 72(3):369–375CrossRef Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohyd Polym 72(3):369–375CrossRef
64.
Zurück zum Zitat Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82(2):337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82(2):337–345CrossRef
65.
Zurück zum Zitat Aloui H, Khwaldia K, Hamdi M, Fortunati E, Kenny JM, Buonocore GG, Lavorgna M (2016) Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng 4(3):794–800CrossRef Aloui H, Khwaldia K, Hamdi M, Fortunati E, Kenny JM, Buonocore GG, Lavorgna M (2016) Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA based nanocomposites. ACS Sustain Chem Eng 4(3):794–800CrossRef
66.
Zurück zum Zitat Sofla MR, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004CrossRef Sofla MR, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004CrossRef
67.
Zurück zum Zitat Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510CrossRef Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510CrossRef
68.
Zurück zum Zitat Ma X, Chang PR, Yu J, Stumborg M (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohyd Polym 75(1):1–8CrossRef Ma X, Chang PR, Yu J, Stumborg M (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohyd Polym 75(1):1–8CrossRef
69.
Zurück zum Zitat García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym 84(1):203–210CrossRef García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym 84(1):203–210CrossRef
70.
Zurück zum Zitat González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohyd Polym 117:83–90CrossRef González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohyd Polym 117:83–90CrossRef
71.
Zurück zum Zitat Guimarães J, Wypych F, Saul C, Ramos L, Satyanarayana K (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohyd Polym 80(1):130–138CrossRef Guimarães J, Wypych F, Saul C, Ramos L, Satyanarayana K (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohyd Polym 80(1):130–138CrossRef
72.
Zurück zum Zitat Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl-alcohol) nanocomposites. Adv Funct Mater 15(6):975–980CrossRef Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl-alcohol) nanocomposites. Adv Funct Mater 15(6):975–980CrossRef
73.
Zurück zum Zitat Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Bio Macromol 59:13–19CrossRef Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Bio Macromol 59:13–19CrossRef
74.
Zurück zum Zitat Koinkar P, Kumar A, Avasthi DK, More M, Murakami R (2015) The high energy ion irradiation impact on carbon nanotubes. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer. Nanocomposites processing, performance and application. Springer, New York, pp 1–12 Koinkar P, Kumar A, Avasthi DK, More M, Murakami R (2015) The high energy ion irradiation impact on carbon nanotubes. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer. Nanocomposites processing, performance and application. Springer, New York, pp 1–12
75.
Zurück zum Zitat Park S, Lee S, Jin F (2015) Surface modification of carbon nanotubes for high-performance polymer composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 13–59 Park S, Lee S, Jin F (2015) Surface modification of carbon nanotubes for high-performance polymer composites. In: Kar KK, Jitendra K, Rana PS (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, New York, pp 13–59
76.
Zurück zum Zitat Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapour permeability and high storage modulus. Carbohyd Polym 87(3):1989–1993CrossRef Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapour permeability and high storage modulus. Carbohyd Polym 87(3):1989–1993CrossRef
77.
Zurück zum Zitat Kim HM, Lee JK, Lee HS (2011) Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films 519(22):7766–7771CrossRef Kim HM, Lee JK, Lee HS (2011) Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films 519(22):7766–7771CrossRef
78.
Zurück zum Zitat Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohyd Polym 84(1):631–637CrossRef Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohyd Polym 84(1):631–637CrossRef
79.
Zurück zum Zitat Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohyd Polym 94(1):63–70CrossRef Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohyd Polym 94(1):63–70CrossRef
80.
Zurück zum Zitat Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch–grafted graphene nanosheet/plasticized–starch composites. Ind Eng Chem Res 52(39):14201–14207CrossRef Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch–grafted graphene nanosheet/plasticized–starch composites. Ind Eng Chem Res 52(39):14201–14207CrossRef
81.
Zurück zum Zitat Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372CrossRef Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372CrossRef
82.
Zurück zum Zitat Echegoyen Y, Rodríguez S, Nerín C (2016) Nanoclay migration from food packaging materials. Food Add Contam A 33(3):530–539CrossRef Echegoyen Y, Rodríguez S, Nerín C (2016) Nanoclay migration from food packaging materials. Food Add Contam A 33(3):530–539CrossRef
83.
Zurück zum Zitat Huang J, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trend Food Sci Technol 45(2):187–199CrossRef Huang J, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trend Food Sci Technol 45(2):187–199CrossRef
84.
Zurück zum Zitat Souza VG, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70CrossRef Souza VG, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70CrossRef
85.
Zurück zum Zitat Arvanitoyannis IS, Bosnea L (2004) Migration of substances from food packaging materials to foods. Crit Rev Food Sci 44(2):63–76CrossRef Arvanitoyannis IS, Bosnea L (2004) Migration of substances from food packaging materials to foods. Crit Rev Food Sci 44(2):63–76CrossRef
86.
Zurück zum Zitat European Union (2011) Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L12:1–89. European Union (2011) Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union L12:1–89.
87.
Zurück zum Zitat Adhikari B, Chaudhary D, Clearfeuille E (2009) The effect of starch-plasticiser(s) interactions on the moisture migration behavior of plasticised low amylose-starch films [online]. In: engineering our future: are we up to the challenge? 27–30 September 2009, Burswood Entertainment Complex. Barton, ACT, Engineers Australia, pp 725–734 Adhikari B, Chaudhary D, Clearfeuille E (2009) The effect of starch-plasticiser(s) interactions on the moisture migration behavior of plasticised low amylose-starch films [online]. In: engineering our future: are we up to the challenge? 27–30 September 2009, Burswood Entertainment Complex. Barton, ACT, Engineers Australia, pp 725–734
88.
Zurück zum Zitat Noonan GO, Whelton AJ, Carlander D, Duncan TV (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Compr Rev Food Sci Food Saf 13(4):679–692CrossRef Noonan GO, Whelton AJ, Carlander D, Duncan TV (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Compr Rev Food Sci Food Saf 13(4):679–692CrossRef
89.
Zurück zum Zitat Arvanitoyannis IS, Kotsanopoulos KV (2013) Migration phenomenon in food packaging. Food-package interactions, mechanisms, types of migrants, testing and relative legislation—a review. Food Bioprocess Technol 7(1):21–36CrossRef Arvanitoyannis IS, Kotsanopoulos KV (2013) Migration phenomenon in food packaging. Food-package interactions, mechanisms, types of migrants, testing and relative legislation—a review. Food Bioprocess Technol 7(1):21–36CrossRef
91.
Zurück zum Zitat Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT Food Sci Technol 50(2):432–438CrossRef Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Migration of antimicrobial agents from starch-based films into a food simulant. LWT Food Sci Technol 50(2):432–438CrossRef
92.
Zurück zum Zitat Huang C, Zhu J, Chen L, Li L, Li X (2014) Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 36(1):55–62CrossRef Huang C, Zhu J, Chen L, Li L, Li X (2014) Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 36(1):55–62CrossRef
93.
Zurück zum Zitat Mauricio-Iglesias M, Peyron S, Guillard V, Gontard N (2010) Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). J Appl Polym Sci 116:2526–2535 Mauricio-Iglesias M, Peyron S, Guillard V, Gontard N (2010) Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). J Appl Polym Sci 116:2526–2535
94.
Zurück zum Zitat Conte A, Longano D, Costa C, Ditaranto N, Ancona A, Cioffi N et al (2013) A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg 19:158–165CrossRef Conte A, Longano D, Costa C, Ditaranto N, Ancona A, Cioffi N et al (2013) A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg 19:158–165CrossRef
95.
Zurück zum Zitat Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Add Contam A 27(11):1617–1626CrossRef Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Add Contam A 27(11):1617–1626CrossRef
96.
Zurück zum Zitat Girdthep S, Worajittiphon P, Molloy R, Lumyong S, Leejarkpai T, Punyodom W (2014) Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 55(26):6776–6788CrossRef Girdthep S, Worajittiphon P, Molloy R, Lumyong S, Leejarkpai T, Punyodom W (2014) Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 55(26):6776–6788CrossRef
97.
Zurück zum Zitat Schmidt B, Katiyar V, Plackett D, Larsen E, Gerds N, Koch CB, Petersen J (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam A 28(7):956–966CrossRef Schmidt B, Katiyar V, Plackett D, Larsen E, Gerds N, Koch CB, Petersen J (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam A 28(7):956–966CrossRef
98.
Zurück zum Zitat Schmidt B, Petersen J, Koch CB, Plackett D, Johansen N, Katiyar V, Larsen E (2009) Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit Contam A 26(12):1619–1627CrossRef Schmidt B, Petersen J, Koch CB, Plackett D, Johansen N, Katiyar V, Larsen E (2009) Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit Contam A 26(12):1619–1627CrossRef
99.
Zurück zum Zitat Mutsuga M, Kawamura Y, Tanamoto K (2008) Migration of lactic acid, lactide and oligomers from polylactide food-contact materials. Food Addit Contam A 25(10):1283–1290CrossRef Mutsuga M, Kawamura Y, Tanamoto K (2008) Migration of lactic acid, lactide and oligomers from polylactide food-contact materials. Food Addit Contam A 25(10):1283–1290CrossRef
100.
Zurück zum Zitat Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd Polym 90(2):948–956CrossRef Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd Polym 90(2):948–956CrossRef
101.
Zurück zum Zitat Mattioli S, Peltzer M, Fortunati E, Armentano I, Jiménez A, Kenny J (2013) Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon 63:274–282CrossRef Mattioli S, Peltzer M, Fortunati E, Armentano I, Jiménez A, Kenny J (2013) Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon 63:274–282CrossRef
102.
Zurück zum Zitat Maio LD, Scarfato P, Milana MR, Feliciani R, Denaro M, Padula G, Incarnato L (2013) Bionanocomposite polylactic acid/organoclay films: functional properties and measurement of total and lactic acid specific migration. Packag Technol Sci 27(7):535–547CrossRef Maio LD, Scarfato P, Milana MR, Feliciani R, Denaro M, Padula G, Incarnato L (2013) Bionanocomposite polylactic acid/organoclay films: functional properties and measurement of total and lactic acid specific migration. Packag Technol Sci 27(7):535–547CrossRef
103.
Zurück zum Zitat Störmer A, Bott J, Kemmer D, Franz R (2017) Critical review of the migration potential of nanoparticles in food contact plastics. Trend Food Sci Technol 63:39–50CrossRef Störmer A, Bott J, Kemmer D, Franz R (2017) Critical review of the migration potential of nanoparticles in food contact plastics. Trend Food Sci Technol 63:39–50CrossRef
104.
Zurück zum Zitat Adhikari B, Chaudhary DS, Clerfeuille E (2010) Effect of plasticizers on the moisture migration behavior of low-amylose starch films during drying. Dry Technol 28(4):468–480CrossRef Adhikari B, Chaudhary DS, Clerfeuille E (2010) Effect of plasticizers on the moisture migration behavior of low-amylose starch films during drying. Dry Technol 28(4):468–480CrossRef
Metadaten
Titel
Recent advances and perspectives on starch nanocomposites for packaging applications
verfasst von
Zainab Waheed Abdullah
Yu Dong
Publikationsdatum
25.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2613-9

Weitere Artikel der Ausgabe 22/2018

Journal of Materials Science 22/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.