Skip to main content
Erschienen in: Journal of Materials Science 17/2019

28.05.2019 | Chemical routes to materials

Supported AuPd nanoparticles with high catalytic activity and excellent separability based on the magnetic polymer carriers

verfasst von: Chunyan Deng, Yinhao Li, Wenlu Sun, Fengli Liu, YingXue Zhang, Hao Qian

Erschienen in: Journal of Materials Science | Ausgabe 17/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An approach is developed to fabricate supported AuPd nanoparticles (NPs) with high catalytic activity and good separability depending on these amino-modified polymer microspheres (Fe3O4@PS-NH2). After the careful surface modification with amino groups, the selective adsorption of these magnetic polymer carriers to p-nitrophenol (4-NP) is much available for the improvement of the catalytic activity of immobilized AuPd nanoparticles. Furthermore, the catalytic activity of the bimetallic catalyst could be tunable via controlling the surface coverage of palladium on Au nanoparticles. The catalytic activity of supported AuPd NPs (S-AuPd250%) for 4-NP reduction increased 3.78 times compared with that of isolated AuPd NPs. The catalytic activity (k/mAu) even reached 479.78 min−1 mg−1 as S-AuPd150% and was selected as the catalyst. In addition, these supported AuPd nanoparticles are easily and rapidly isolated by magnetic separation. Due to its high stability, these supported AuPd NPs could be recycled for 30 runs without any loss of catalytic activity. Thus, the high catalytic activity and easy separability of this supported AuPd NPs are efficiently combined together, which is showing great potential in nanocatalysts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki–Miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061CrossRef Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki–Miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061CrossRef
2.
Zurück zum Zitat Haruta M (2014) Chance and necessity: my encounter with gold catalysts. Angew Chem Int Ed 53:52–56CrossRef Haruta M (2014) Chance and necessity: my encounter with gold catalysts. Angew Chem Int Ed 53:52–56CrossRef
3.
Zurück zum Zitat Han DQ, Xu TT, Su JX, Xu XH, Ding Y (2010) Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold. ChemCatChem 2:383–386CrossRef Han DQ, Xu TT, Su JX, Xu XH, Ding Y (2010) Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold. ChemCatChem 2:383–386CrossRef
4.
Zurück zum Zitat Zhang Y, Cui XJ, Shi F, Deng YQ (2012) Nano-gold catalysis in fine chemical synthesis. Chem Rev 112:2467–2505CrossRef Zhang Y, Cui XJ, Shi F, Deng YQ (2012) Nano-gold catalysis in fine chemical synthesis. Chem Rev 112:2467–2505CrossRef
5.
Zurück zum Zitat Zhang L, Xie ZX, Gong JL (2016) Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 45:3916–3934CrossRef Zhang L, Xie ZX, Gong JL (2016) Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 45:3916–3934CrossRef
6.
Zurück zum Zitat Ma T, Liang F, Chen RS, Liu SM, Zhang HJ (2017) Synthesis of Au–Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials 7:239CrossRef Ma T, Liang F, Chen RS, Liu SM, Zhang HJ (2017) Synthesis of Au–Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials 7:239CrossRef
7.
Zurück zum Zitat Rej S, Hsia CF, Chen TY, Lin FC, Huang JS, Huang MH (2016) Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold–palladium core–shell nanocatalysts. Angew Chem Int Ed 128:7338–7342CrossRef Rej S, Hsia CF, Chen TY, Lin FC, Huang JS, Huang MH (2016) Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold–palladium core–shell nanocatalysts. Angew Chem Int Ed 128:7338–7342CrossRef
8.
Zurück zum Zitat Zhong JT, Bin D, Feng Y, Zhang K, Wang J, Wang CQ, Guo J, Yang P, Du YK (2016) Synthesis and high electrocatalytic activity of Au-decorated Pd heterogeneous nanocube catalysts for ethanol electro-oxidation in alkaline media. Catal Sci Technol 6:5397–5404CrossRef Zhong JT, Bin D, Feng Y, Zhang K, Wang J, Wang CQ, Guo J, Yang P, Du YK (2016) Synthesis and high electrocatalytic activity of Au-decorated Pd heterogeneous nanocube catalysts for ethanol electro-oxidation in alkaline media. Catal Sci Technol 6:5397–5404CrossRef
9.
Zurück zum Zitat Wang DS, Li YD (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060CrossRef Wang DS, Li YD (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060CrossRef
10.
Zurück zum Zitat Dhital RN, Kamonsatikul C, Somsook E, Bobuatong K, Ehara M, Karanjit S, Sakurai H (2012) Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters: an application to Ullmann coupling. J Am Chem Soc 134:20250–20253CrossRef Dhital RN, Kamonsatikul C, Somsook E, Bobuatong K, Ehara M, Karanjit S, Sakurai H (2012) Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters: an application to Ullmann coupling. J Am Chem Soc 134:20250–20253CrossRef
11.
Zurück zum Zitat Su GX, Jiang HQ, Zhu HY, Lv JJ, Yang GH, Yan B, Zhu JJ (2017) Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. Nanoscale 9:12494–12502CrossRef Su GX, Jiang HQ, Zhu HY, Lv JJ, Yang GH, Yan B, Zhu JJ (2017) Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. Nanoscale 9:12494–12502CrossRef
12.
Zurück zum Zitat Kortlever R, Peters I, Balemans C, Kas R, Kwon Y, Mul G, Koper MT (2016) Palladium-gold catalyst for the electrochemical reduction of CO2 to C-1–C-5 hydrocarbons. Chem Commun 52:10229–10232CrossRef Kortlever R, Peters I, Balemans C, Kas R, Kwon Y, Mul G, Koper MT (2016) Palladium-gold catalyst for the electrochemical reduction of CO2 to C-1–C-5 hydrocarbons. Chem Commun 52:10229–10232CrossRef
13.
Zurück zum Zitat Pretzer LA, Song HJ, Fang YL, Zhao Z, Guo N, Wu TP, Arslan I, Miller JT, Wong MS (2013) Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. J Catal 298:206–217CrossRef Pretzer LA, Song HJ, Fang YL, Zhao Z, Guo N, Wu TP, Arslan I, Miller JT, Wong MS (2013) Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. J Catal 298:206–217CrossRef
14.
Zurück zum Zitat Zhao Y, Baeza JA, Rao NK, Calvo L, Gilarranz MA, Li YD, Lefferts L (2014) Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase. J Catal 318:162–169CrossRef Zhao Y, Baeza JA, Rao NK, Calvo L, Gilarranz MA, Li YD, Lefferts L (2014) Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase. J Catal 318:162–169CrossRef
15.
Zurück zum Zitat Chen MS, Kumar D, Yi CW, Goodman DW (2005) The promotional effect of gold in catalysis by palladium-gold. Science 310:291–293CrossRef Chen MS, Kumar D, Yi CW, Goodman DW (2005) The promotional effect of gold in catalysis by palladium-gold. Science 310:291–293CrossRef
16.
Zurück zum Zitat Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725CrossRef Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725CrossRef
17.
Zurück zum Zitat Sahoo GP, Bhui DK, Das D, Misra A (2014) Synthesis of anisotropic gold nanoparticles and their catalytic activities of breaking azo bond in sudan-1. J Mol Liq 198:215–222CrossRef Sahoo GP, Bhui DK, Das D, Misra A (2014) Synthesis of anisotropic gold nanoparticles and their catalytic activities of breaking azo bond in sudan-1. J Mol Liq 198:215–222CrossRef
18.
Zurück zum Zitat Li H, Liao JY, Du YC, You T, Liao WW, Wen LL (2013) Magnetic-field-induced deposition to fabricate multifunctional nanostructured Co, Ni, and CoNi alloy films as catalysts, ferromagnetic and superhydrophobic materials. Chem Commun 49:1768–1770CrossRef Li H, Liao JY, Du YC, You T, Liao WW, Wen LL (2013) Magnetic-field-induced deposition to fabricate multifunctional nanostructured Co, Ni, and CoNi alloy films as catalysts, ferromagnetic and superhydrophobic materials. Chem Commun 49:1768–1770CrossRef
19.
Zurück zum Zitat Ballarin B, Cassani MC, Tonelli D, Boanini E, Albonetti S, Blosi M, Gazzano M (2010) Gold nanoparticle-containing membranes from in situ reduction of a gold(III)-aminoethylimidazolium aurate salt. J Phys Chem C 114:9693–9701CrossRef Ballarin B, Cassani MC, Tonelli D, Boanini E, Albonetti S, Blosi M, Gazzano M (2010) Gold nanoparticle-containing membranes from in situ reduction of a gold(III)-aminoethylimidazolium aurate salt. J Phys Chem C 114:9693–9701CrossRef
20.
Zurück zum Zitat Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139CrossRef Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139CrossRef
21.
Zurück zum Zitat Hu HW, Xin JH, Hu H, Wang XW, Miao DG, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3:11157–11182CrossRef Hu HW, Xin JH, Hu H, Wang XW, Miao DG, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3:11157–11182CrossRef
22.
Zurück zum Zitat Dominguez PG, Nevado C (2016) Au–Pd bimetallic catalysis: the importance of anionic ligands in catalyst speciation. J Am Chem Soc 138:3266–3269CrossRef Dominguez PG, Nevado C (2016) Au–Pd bimetallic catalysis: the importance of anionic ligands in catalyst speciation. J Am Chem Soc 138:3266–3269CrossRef
23.
Zurück zum Zitat Sen B, Kuyuldar E, Demirkan B, Okyay TO, Savk A, Sen F (2018) Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J Colloid Interface Sci 526:480–486CrossRef Sen B, Kuyuldar E, Demirkan B, Okyay TO, Savk A, Sen F (2018) Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J Colloid Interface Sci 526:480–486CrossRef
24.
Zurück zum Zitat Gu S, Lu Y, Kaiser J, Albrecht M, Ballauff M (2015) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys Chem Chem Phys 17:28137–28143CrossRef Gu S, Lu Y, Kaiser J, Albrecht M, Ballauff M (2015) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys Chem Chem Phys 17:28137–28143CrossRef
25.
Zurück zum Zitat Seraj S, Kunal P, Li H, Henkelman G, Humphrey SM, Werth CJ (2017) PdAu alloy nanoparticle catalysts: effective candidates for nitrite reduction in water. ACS Catal 7:3268–3276CrossRef Seraj S, Kunal P, Li H, Henkelman G, Humphrey SM, Werth CJ (2017) PdAu alloy nanoparticle catalysts: effective candidates for nitrite reduction in water. ACS Catal 7:3268–3276CrossRef
26.
Zurück zum Zitat Han DX, Bao ZB, Xing HB, Yang YW, Ren QL, Zhang ZG (2017) Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale 9:6026–6032CrossRef Han DX, Bao ZB, Xing HB, Yang YW, Ren QL, Zhang ZG (2017) Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale 9:6026–6032CrossRef
27.
Zurück zum Zitat Olmos CM, Chinchilla LE, Rodrigues EG, Delgado JJ, Hungría AB, Blanco G, Pereira MFR, Órfão JJM, Calvino JJ, Chen XW (2016) Synergistic effect of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl Catal B-Environ 197:222–235CrossRef Olmos CM, Chinchilla LE, Rodrigues EG, Delgado JJ, Hungría AB, Blanco G, Pereira MFR, Órfão JJM, Calvino JJ, Chen XW (2016) Synergistic effect of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl Catal B-Environ 197:222–235CrossRef
28.
Zurück zum Zitat Xia QD, Fu SS, Ren GJ, Chai F, Jiang JJ, Qu FY (2016) Fabrication of magnetic bimetallic Fe3O4@Au–Pd hybrid nanoparticles with recyclable and efficient catalytic properties. RSC Adv 6:55248–55256CrossRef Xia QD, Fu SS, Ren GJ, Chai F, Jiang JJ, Qu FY (2016) Fabrication of magnetic bimetallic Fe3O4@Au–Pd hybrid nanoparticles with recyclable and efficient catalytic properties. RSC Adv 6:55248–55256CrossRef
29.
Zurück zum Zitat Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KCW, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287CrossRef Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KCW, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287CrossRef
30.
Zurück zum Zitat Miller HA, Bellini M, Vizza F, Hasenöhrl C, Tilley RD (2016) Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming. Catal Sci Technol 6:6870–6878CrossRef Miller HA, Bellini M, Vizza F, Hasenöhrl C, Tilley RD (2016) Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming. Catal Sci Technol 6:6870–6878CrossRef
31.
Zurück zum Zitat Liu CH, Liu RH, Sun QJ, Chang JB, Gao X, Liu Y, Lee ST, Kang ZH, Wang SD (2015) Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7:6356–6362CrossRef Liu CH, Liu RH, Sun QJ, Chang JB, Gao X, Liu Y, Lee ST, Kang ZH, Wang SD (2015) Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7:6356–6362CrossRef
32.
Zurück zum Zitat Xu C, Wang X (2012) Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. Colloid Surf A Physicochem Eng Asp 404:78–82CrossRef Xu C, Wang X (2012) Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. Colloid Surf A Physicochem Eng Asp 404:78–82CrossRef
33.
Zurück zum Zitat Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735CrossRef Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735CrossRef
34.
Zurück zum Zitat Li CJ, Wang Z, Li Q, Peng LY, Zhang WQ, Zhang YX, Qian H (2017) Improving catalytic activity of supported Au nanoparticles depending on its density. J Mol Catal A: Chem 427:18–24CrossRef Li CJ, Wang Z, Li Q, Peng LY, Zhang WQ, Zhang YX, Qian H (2017) Improving catalytic activity of supported Au nanoparticles depending on its density. J Mol Catal A: Chem 427:18–24CrossRef
35.
Zurück zum Zitat Sun LC, Zhang QF, Li GG, Villarreal E, Fu XQ, Wang H (2017) Multifaceted gold–palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities. ACS Nano 11:3213–3228CrossRef Sun LC, Zhang QF, Li GG, Villarreal E, Fu XQ, Wang H (2017) Multifaceted gold–palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities. ACS Nano 11:3213–3228CrossRef
36.
Zurück zum Zitat Chen D, Li JQ, Cui PL, Liu H, Yang J (2016) Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821CrossRef Chen D, Li JQ, Cui PL, Liu H, Yang J (2016) Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821CrossRef
37.
Zurück zum Zitat Li MT, Wang CH, Lai SF, Chen YH, Ong EBL, Lin CK, Margaritondo G, Hwu Y (2015) Uncapped Au–Pd colloidal nanoparticles show catalytic enhancement. RSC Adv 5:61846–61850CrossRef Li MT, Wang CH, Lai SF, Chen YH, Ong EBL, Lin CK, Margaritondo G, Hwu Y (2015) Uncapped Au–Pd colloidal nanoparticles show catalytic enhancement. RSC Adv 5:61846–61850CrossRef
38.
Zurück zum Zitat Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B-Environ 69:115–125CrossRef Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B-Environ 69:115–125CrossRef
39.
Zurück zum Zitat Pretzer LA, Heck KN, Kim SS, Fang YL, Zhao Z, Guo N, Wu TP, Miller JT, Wong MS (2016) Improving gold catalysis of nitroarene reduction with surface Pd. Catal Today 264:31–36CrossRef Pretzer LA, Heck KN, Kim SS, Fang YL, Zhao Z, Guo N, Wu TP, Miller JT, Wong MS (2016) Improving gold catalysis of nitroarene reduction with surface Pd. Catal Today 264:31–36CrossRef
40.
Zurück zum Zitat Tang SC, Vongehr S, He GR, Chen L, Meng XK (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Interface Sci 375:125–133CrossRef Tang SC, Vongehr S, He GR, Chen L, Meng XK (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Interface Sci 375:125–133CrossRef
41.
Zurück zum Zitat Fang W, Deng TC, Tang L, Zeng GM, Zhou YY, Xie X, Wang JJ, Wang Y, Wang JJ (2017) Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol. J Colloid Interface Sci 490:834–843CrossRef Fang W, Deng TC, Tang L, Zeng GM, Zhou YY, Xie X, Wang JJ, Wang Y, Wang JJ (2017) Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol. J Colloid Interface Sci 490:834–843CrossRef
42.
Zurück zum Zitat Xia QD, Fu SS, Ren GJ, Chai F, Jiang JJ, Qu FY (2016) Fabrication of magnetic bimetallic Fe3O4@Au–Pd hybrid nanoparticles with recyclable and efficient catalytic properties. RSC Adv 6:55248–55256CrossRef Xia QD, Fu SS, Ren GJ, Chai F, Jiang JJ, Qu FY (2016) Fabrication of magnetic bimetallic Fe3O4@Au–Pd hybrid nanoparticles with recyclable and efficient catalytic properties. RSC Adv 6:55248–55256CrossRef
43.
Zurück zum Zitat Jiang F, Li RM, Cai JH, Xu W, Cao AM, Chen DQ, Zhang X, Wang CR, Shu CY (2015) Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J Mater Chem A 3:19433–19438CrossRef Jiang F, Li RM, Cai JH, Xu W, Cao AM, Chen DQ, Zhang X, Wang CR, Shu CY (2015) Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J Mater Chem A 3:19433–19438CrossRef
44.
Zurück zum Zitat Yao W, Li FL, Li XH, Lang JP (2015) Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J Mater Chem A 3:4578–4585CrossRef Yao W, Li FL, Li XH, Lang JP (2015) Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J Mater Chem A 3:4578–4585CrossRef
45.
Zurück zum Zitat Yao TJ, Zuo Q, Wang H, Wu J, Zhang X, Sun JM, Cui TY (2015) Preparation of PdxAuy bimetallic nanostructures with controllable morphologies supported on reduced graphene oxide nanosheets and wrapped in a polypyrrole layer. RSC Adv 5:87831–87837CrossRef Yao TJ, Zuo Q, Wang H, Wu J, Zhang X, Sun JM, Cui TY (2015) Preparation of PdxAuy bimetallic nanostructures with controllable morphologies supported on reduced graphene oxide nanosheets and wrapped in a polypyrrole layer. RSC Adv 5:87831–87837CrossRef
Metadaten
Titel
Supported AuPd nanoparticles with high catalytic activity and excellent separability based on the magnetic polymer carriers
verfasst von
Chunyan Deng
Yinhao Li
Wenlu Sun
Fengli Liu
YingXue Zhang
Hao Qian
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03701-7

Weitere Artikel der Ausgabe 17/2019

Journal of Materials Science 17/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.