Skip to main content
Erschienen in: Journal of Materials Science 6/2020

10.10.2019 | Energy materials

Cotton-based naturally wearable power source for self-powered personal electronics

verfasst von: Yingjie Tang, Hao Zhou, Xiupeng Sun, Tianxing Feng, Xinya Zhao, Zhipeng Wang, Erjun Liang, Yanchao Mao

Erschienen in: Journal of Materials Science | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The emergence of wearable electronic products represents the transformation of traditional personal electronic products. Nonetheless, the progress of wearable electronics is greatly limited by the frequent and inconvenient charging of their traditional power units. Therefore, it is desirable to develop a wearable power source that can scavenge biomechanical energy from human motions and then directly power wearable electronics continuously. Here, we demonstrated a naturally wearable cotton triboelectric nanogenerator (C-TENG) based on a piece of cotton in situ on clothes. This wearable C-TENG can power wearable electronics continuously by effectively converting biomechanical energy into electricity. The C-TENG is operated by the friction between the cotton and a porous polytetrafluoroethylene thin film. By naturally integrated on the clothes, the flexible C-TENG can scavenge mechanical energy from the motion of swing arms when people are walking or running. When operated by swinging arms, the output voltage and current of the C-TENG could reach 660 V and 12.5 μA, respectively. This generated electricity can immediately power some wearable electronics like an electronic watch, a running light and a light-emitting diode guiding sign. This naturally wearable C-TENG could pave the way for developing self-powered personal electronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang ZL (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9:244CrossRef Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang ZL (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9:244CrossRef
2.
Zurück zum Zitat Deng JN, Kuang X, Liu RY, Ding WB, Wang AC, Lai Y, Dong K, Wen Z, Wang YX, Wang LL, Qi HJ, Zhang T, Wang ZL (2018) Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater 30:1705918CrossRef Deng JN, Kuang X, Liu RY, Ding WB, Wang AC, Lai Y, Dong K, Wen Z, Wang YX, Wang LL, Qi HJ, Zhang T, Wang ZL (2018) Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater 30:1705918CrossRef
3.
Zurück zum Zitat Hua C, Shang Y, Li X, Hu X, Wang Y, Wang X, Zhang Y, Li X, Duan H, Cao A (2016) Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale 8:10659–10668CrossRef Hua C, Shang Y, Li X, Hu X, Wang Y, Wang X, Zhang Y, Li X, Duan H, Cao A (2016) Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale 8:10659–10668CrossRef
4.
Zurück zum Zitat Bao R, Wang C, Peng Z, Ma C, Dong L, Pan C (2017) Light-emission enhancement in a flexible and size-controllable Zno nanowire/organic light-emitting diode array by the piezotronic effect. ACS Photonics 4:1344–1349CrossRef Bao R, Wang C, Peng Z, Ma C, Dong L, Pan C (2017) Light-emission enhancement in a flexible and size-controllable Zno nanowire/organic light-emitting diode array by the piezotronic effect. ACS Photonics 4:1344–1349CrossRef
5.
Zurück zum Zitat Long B, Yang H, Wang F, Mao Y, Balogun M, Song S, Tong Y (2018) Chemically-modified stainless steel mesh derived substrate-free iron-based composite as anode materials for affordable flexible energy storage devices. Electrochim Acta 284:271–278CrossRef Long B, Yang H, Wang F, Mao Y, Balogun M, Song S, Tong Y (2018) Chemically-modified stainless steel mesh derived substrate-free iron-based composite as anode materials for affordable flexible energy storage devices. Electrochim Acta 284:271–278CrossRef
6.
Zurück zum Zitat Bandodkar AJ, You JM, Kim NH, Gu Y, Kumar R, Mohan AMV, Kurniawan J, Imani S, Nakagawa T, Parish B, Parthasarathy M, Mercier PP, Xu S, Wang J (2017) Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ Sci 10:1581–1589CrossRef Bandodkar AJ, You JM, Kim NH, Gu Y, Kumar R, Mohan AMV, Kurniawan J, Imani S, Nakagawa T, Parish B, Parthasarathy M, Mercier PP, Xu S, Wang J (2017) Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ Sci 10:1581–1589CrossRef
7.
Zurück zum Zitat Sang SB, Liu LH, Jian AQ, Duan QQ, Ji JL, Zhang Q, Zhang WD (2018) Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29:255202CrossRef Sang SB, Liu LH, Jian AQ, Duan QQ, Ji JL, Zhang Q, Zhang WD (2018) Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29:255202CrossRef
8.
Zurück zum Zitat Shang Y, Hua C, Xu W, Hu X, Wang Y, Zhou Y, Zhang Y, Li X, Cao A (2016) Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett 16:1768–1775CrossRef Shang Y, Hua C, Xu W, Hu X, Wang Y, Zhou Y, Zhang Y, Li X, Cao A (2016) Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett 16:1768–1775CrossRef
9.
Zurück zum Zitat Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29:1703700CrossRef Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29:1703700CrossRef
10.
Zurück zum Zitat Lin ZM, Chen J, Li XS, Zhou ZH, Meng KY, Wei W, Yang J, Wang ZL (2017) Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11:8830–8837CrossRef Lin ZM, Chen J, Li XS, Zhou ZH, Meng KY, Wei W, Yang J, Wang ZL (2017) Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11:8830–8837CrossRef
11.
Zurück zum Zitat Bao R, Wang C, Dong L, Shen C, Zhao K, Pan C (2016) CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale 8:8078–8082CrossRef Bao R, Wang C, Dong L, Shen C, Zhao K, Pan C (2016) CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale 8:8078–8082CrossRef
13.
Zurück zum Zitat Cai GM, Yang MY, Pan JJ, Cheng DS, Xia ZG, Wang X, Tang B (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10:32726–32735CrossRef Cai GM, Yang MY, Pan JJ, Cheng DS, Xia ZG, Wang X, Tang B (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10:32726–32735CrossRef
14.
Zurück zum Zitat Pan JJ, Yang MY, Luo L, Xu AC, Tang B, Cheng DS, Cai GM, Wang X (2019) Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl Mater Interfaces 11:7338–7348CrossRef Pan JJ, Yang MY, Luo L, Xu AC, Tang B, Cheng DS, Cai GM, Wang X (2019) Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl Mater Interfaces 11:7338–7348CrossRef
15.
Zurück zum Zitat Li X, Fu J, Sun Y, Sun M, Cheng S, Chen K, Yang X, Lou Q, Xu T, Shang Y, Xu J, Chen Q, Shan C (2019) Design and understanding of core/branch-structured VS2 nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. Nanoscale 11:13343–13353CrossRef Li X, Fu J, Sun Y, Sun M, Cheng S, Chen K, Yang X, Lou Q, Xu T, Shang Y, Xu J, Chen Q, Shan C (2019) Design and understanding of core/branch-structured VS2 nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. Nanoscale 11:13343–13353CrossRef
16.
Zurück zum Zitat Liu X, Zhao K, Wang ZL, Yang Y (2017) Unity convoluted design of solid li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv Energy Mater 7:1701629CrossRef Liu X, Zhao K, Wang ZL, Yang Y (2017) Unity convoluted design of solid li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv Energy Mater 7:1701629CrossRef
17.
Zurück zum Zitat Zhang B, Tang Y, Dai R, Wang H, Sun X, Qin C, Pan Z, Liang E, Mao Y (2019) Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 64:103953CrossRef Zhang B, Tang Y, Dai R, Wang H, Sun X, Qin C, Pan Z, Liang E, Mao Y (2019) Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 64:103953CrossRef
18.
Zurück zum Zitat Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X (2018) Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12:6156–6162CrossRef Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X (2018) Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12:6156–6162CrossRef
19.
Zurück zum Zitat Mao YC, Zhao P, McConohy G, Yang H, Tong YX, Wang XD (2014) Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv Energy Mater 4:1301624CrossRef Mao YC, Zhao P, McConohy G, Yang H, Tong YX, Wang XD (2014) Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv Energy Mater 4:1301624CrossRef
20.
Zurück zum Zitat Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334CrossRef Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334CrossRef
21.
Zurück zum Zitat Mao Y, Geng D, Liang E, Wang X (2015) Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15:227–234CrossRef Mao Y, Geng D, Liang E, Wang X (2015) Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 15:227–234CrossRef
22.
Zurück zum Zitat Nguyen V, Zhu R, Yang R (2015) Environmental effects on nanogenerators. Nano Energy 14:49–61CrossRef Nguyen V, Zhu R, Yang R (2015) Environmental effects on nanogenerators. Nano Energy 14:49–61CrossRef
23.
Zurück zum Zitat Wang RX, Gao SJ, Yang Z, Li YL, Chen WN, Wu BX, Wu WZ (2018) Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv Mater 30:1706267CrossRef Wang RX, Gao SJ, Yang Z, Li YL, Chen WN, Wu BX, Wu WZ (2018) Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv Mater 30:1706267CrossRef
24.
Zurück zum Zitat Zhao XJ, Kuang SY, Wang ZL, Zhu G (2018) Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12:4280–4285CrossRef Zhao XJ, Kuang SY, Wang ZL, Zhu G (2018) Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12:4280–4285CrossRef
25.
Zurück zum Zitat Ning C, Tian L, Zhao X, Xiang S, Tang Y, Liang E, Mao Y (2018) Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J Mater Chem A 6:19143–19150CrossRef Ning C, Tian L, Zhao X, Xiang S, Tang Y, Liang E, Mao Y (2018) Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J Mater Chem A 6:19143–19150CrossRef
26.
Zurück zum Zitat Mao YC, Zhang N, Tang YJ, Wang M, Chao MJ, Liang EJ (2017) A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 9:14499–14505CrossRef Mao YC, Zhang N, Tang YJ, Wang M, Chao MJ, Liang EJ (2017) A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 9:14499–14505CrossRef
27.
Zurück zum Zitat Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30:1804944CrossRef Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30:1804944CrossRef
28.
Zurück zum Zitat Shen J, Li Z, Yu J, Ding B (2017) Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40:282–288CrossRef Shen J, Li Z, Yu J, Ding B (2017) Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40:282–288CrossRef
29.
Zurück zum Zitat Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3:e1700015CrossRef Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3:e1700015CrossRef
30.
Zurück zum Zitat Kim HJ, Kim JH, Jun KW, Kim JH, Seung WC, Kwon OH, Park JY, Kim SW, Oh IK (2016) Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv Energy Mater 6:1502329CrossRef Kim HJ, Kim JH, Jun KW, Kim JH, Seung WC, Kwon OH, Park JY, Kim SW, Oh IK (2016) Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv Energy Mater 6:1502329CrossRef
31.
Zurück zum Zitat Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28:98–105CrossRef Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28:98–105CrossRef
32.
Zurück zum Zitat Zhang M, Gao T, Wang J, Liao J, Qiu Y, Yang Q, Xue H, Shi Z, Zhao Y, Xiong Z, Chen L (2015) A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13:298–305CrossRef Zhang M, Gao T, Wang J, Liao J, Qiu Y, Yang Q, Xue H, Shi Z, Zhao Y, Xiong Z, Chen L (2015) A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13:298–305CrossRef
33.
Zurück zum Zitat Mahmud MAP, Huda N, Farjana SH, Asadnia M, Lang C (2018) Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv Energy Mater 8:1701210CrossRef Mahmud MAP, Huda N, Farjana SH, Asadnia M, Lang C (2018) Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv Energy Mater 8:1701210CrossRef
34.
Zurück zum Zitat Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29:1702648CrossRef Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29:1702648CrossRef
35.
Zurück zum Zitat Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252CrossRef Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252CrossRef
36.
Zurück zum Zitat Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290CrossRef Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrostat 62:277–290CrossRef
37.
Zurück zum Zitat Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346CrossRef Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346CrossRef
38.
Zurück zum Zitat Meng B, Tang W, Zhang X, Han M, Liu W, Zhang H (2013) Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2:1101–1106CrossRef Meng B, Tang W, Zhang X, Han M, Liu W, Zhang H (2013) Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2:1101–1106CrossRef
39.
Zurück zum Zitat Wang M, Zhang N, Tang YJ, Zhang H, Ning C, Tian L, Li WH, Zhang JH, Mao YC, Liang EJ (2017) Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J Mater Chem A 5:12252–12257CrossRef Wang M, Zhang N, Tang YJ, Zhang H, Ning C, Tian L, Li WH, Zhang JH, Mao YC, Liang EJ (2017) Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J Mater Chem A 5:12252–12257CrossRef
Metadaten
Titel
Cotton-based naturally wearable power source for self-powered personal electronics
verfasst von
Yingjie Tang
Hao Zhou
Xiupeng Sun
Tianxing Feng
Xinya Zhao
Zhipeng Wang
Erjun Liang
Yanchao Mao
Publikationsdatum
10.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04095-2

Weitere Artikel der Ausgabe 6/2020

Journal of Materials Science 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.