Skip to main content
Erschienen in: Journal of Materials Science 20/2020

25.02.2020 | Advanced Ceramics

Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type materials

verfasst von: Radhouene Kahlaoui, Kamel Arbi, Ricardo Jimenez, Isabel Sobrados, Jesus Sanz, Riadh Ternane

Erschienen in: Journal of Materials Science | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NASICON-type Li1+4xTi2−x(PO4)3 samples (0 ≤ x ≤ 0.2) have been synthesized by conventional solid-state reaction. Structural factors that affect Li conductivity were investigated with powder X-ray diffraction (XRD), scanning electron microscopy, nuclear magnetic resonance (NMR) and impedance spectroscopy techniques. The increment in lithium enhances Li–Li repulsions and increases Li conductivity of x = 0.1 samples with two orders of magnitude with respect to that of the stoichiometric x = 0 sample. In LiTi2(PO4)3 phase, Li ions mainly occupy sixfold M1 sites (CQ ~ 40 kHz), while in Li1+4xTi2−x(PO4)3 samples, Li ions are also allocated near triangular windows that connect M1 and M2 cavities (CQ ~ 60 kHz). T he Li rearrangement increases long-range motions of lithium. XRD and 31P MAS-NMR patterns showed variable amounts of secondary LiTiPO5, TiP2O7 and Li4P2O7 phases besides NASICON compounds. The formation of non-conducting secondary phases at the surface of NASICON particles decreases overall conductivity of x = 0.2 samples. The Li1.4Ti1.9(PO4)3 (x = 0.1 sample) prepared at 800 °C displays at room temperature high "bulk" conductivity, 1.6 × 10−4 S cm−1, low activation energy, 0.30 eV, and good overall DC conductivity, 2.7 × 10–6 S cm−1. The small amount of secondary phases detected in this sample makes it a good candidate for solid electrolyte in all solid-state batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state lithium-ion microbatteries: a review of various three-dimensional concept. Adv Energy Mater 1:110–133 Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state lithium-ion microbatteries: a review of various three-dimensional concept. Adv Energy Mater 1:110–133
2.
Zurück zum Zitat Kotobuki M, Suzuki Y, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) A novel structure of ceramics electrolyte for future lithium battery. J Power Sources 196:9815–9819 Kotobuki M, Suzuki Y, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2011) A novel structure of ceramics electrolyte for future lithium battery. J Power Sources 196:9815–9819
3.
Zurück zum Zitat Braga MH, Grundish NS, Murchison AJ, Goodenough JB (2017) Alternative strategy for a safe rechargeable battery. Energy Environ Sci 10:331–336 Braga MH, Grundish NS, Murchison AJ, Goodenough JB (2017) Alternative strategy for a safe rechargeable battery. Energy Environ Sci 10:331–336
4.
Zurück zum Zitat Chen K, Huang M, Shen Y, Lin Y, Nan CW (2012) Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochim Acta 80:133–139 Chen K, Huang M, Shen Y, Lin Y, Nan CW (2012) Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. Electrochim Acta 80:133–139
5.
Zurück zum Zitat Dumon A, Huang M, Shen Y, Nan CW (2013) High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion 243:36–41 Dumon A, Huang M, Shen Y, Nan CW (2013) High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion 243:36–41
6.
Zurück zum Zitat Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8:10617–10626 Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8:10617–10626
7.
Zurück zum Zitat Wei J, Kim H, Lee DC, Hu R, Wu F, Zhao H, Alamgir F, Yushin G (2015) Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. J Power Sources 294:494–500 Wei J, Kim H, Lee DC, Hu R, Wu F, Zhao H, Alamgir F, Yushin G (2015) Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. J Power Sources 294:494–500
8.
Zurück zum Zitat Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J (2013) Structural factors that enhance lithium mobility in fast-ion Li1+xTi2−xAlx(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K. Inorgan Chem 52:9290–9296 Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J (2013) Structural factors that enhance lithium mobility in fast-ion Li1+xTi2xAlx(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K. Inorgan Chem 52:9290–9296
9.
Zurück zum Zitat Kahlaoui R, Arbi K, Sobrados I, Jimenez R, Sanz J, Ternane R (2017) Cation miscibility and lithium mobility in NASICON Li1+xTi2−xScx(PO4)3 (0 ≤ x ≤ 0.5) series: a combined NMR and impedance study. Inorgan Chem 56:1216–1224 Kahlaoui R, Arbi K, Sobrados I, Jimenez R, Sanz J, Ternane R (2017) Cation miscibility and lithium mobility in NASICON Li1+xTi2xScx(PO4)3 (0 ≤ x ≤ 0.5) series: a combined NMR and impedance study. Inorgan Chem 56:1216–1224
10.
Zurück zum Zitat Weiss M, Weber DA, Senyshyn A, Janek J, Zeier WG (2018) Correlating transport and structural properties in Li1+xAlxGe2−x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl Mater Interfaces 10(13):10935–10944 Weiss M, Weber DA, Senyshyn A, Janek J, Zeier WG (2018) Correlating transport and structural properties in Li1+xAlxGe2x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl Mater Interfaces 10(13):10935–10944
11.
Zurück zum Zitat Morin E, Angenault J, Couturier JC, Quarton M, He H, Klinowski J (1997) Phase transition and crystal structures of LiSn2(PO4)3. Eur J Solid State Inorgan Chem 34:947–958 Morin E, Angenault J, Couturier JC, Quarton M, He H, Klinowski J (1997) Phase transition and crystal structures of LiSn2(PO4)3. Eur J Solid State Inorgan Chem 34:947–958
12.
Zurück zum Zitat Catti M, Stramare S, Ibberson R (1999) Lithium location in NASICON-type Li+ conductors by neutron diffraction I. Triclinic α′-LiZr2(PO4)3. Solid State Ionics 123:173–180 Catti M, Stramare S, Ibberson R (1999) Lithium location in NASICON-type Li+ conductors by neutron diffraction I. Triclinic α′-LiZr2(PO4)3. Solid State Ionics 123:173–180
13.
Zurück zum Zitat Losilla ER, Aranda MAG, Martinez-Lara M, Bruque S (1997) Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)3: crystal structures from neutron powder diffraction. Chem Mater 9:1678–1685 Losilla ER, Aranda MAG, Martinez-Lara M, Bruque S (1997) Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)3: crystal structures from neutron powder diffraction. Chem Mater 9:1678–1685
14.
Zurück zum Zitat Aono H, Sugimoto E, Sadaoka Y, Imanoka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027 Aono H, Sugimoto E, Sadaoka Y, Imanoka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027
15.
Zurück zum Zitat Arbi K, Lazarraga MG, Ben Hassen Chehimi D, Ayadi-Trabelsi M, Rojo JM, Sanz J (2004) Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255–262 Arbi K, Lazarraga MG, Ben Hassen Chehimi D, Ayadi-Trabelsi M, Rojo JM, Sanz J (2004) Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy. Chem Mater 16:255–262
16.
Zurück zum Zitat Pérez-Estébanez M, Isasi-Marín J, Többens DM, Rivera Calzada A, León C (2014) A systematic study of Nasicon-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion 266:1–8 Pérez-Estébanez M, Isasi-Marín J, Többens DM, Rivera Calzada A, León C (2014) A systematic study of Nasicon-type Li1+xMxTi2x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion 266:1–8
17.
Zurück zum Zitat Catti M, Comotti A, Di Blas S, Ibberson RM (2004) Extensive lithium disorder in Li1.5Fe0.5Ti1.5(PO4)3 Nasicon by neutron diffraction, and the Li1+xFexTi2−x(PO4)3 phase diagram. J Mater Chem 14:835–839 Catti M, Comotti A, Di Blas S, Ibberson RM (2004) Extensive lithium disorder in Li1.5Fe0.5Ti1.5(PO4)3 Nasicon by neutron diffraction, and the Li1+xFexTi2x(PO4)3 phase diagram. J Mater Chem 14:835–839
18.
Zurück zum Zitat Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Lithium diffusion pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) superionic conductor. Inorgan Chem 55:2941–2945 Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Lithium diffusion pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) superionic conductor. Inorgan Chem 55:2941–2945
19.
Zurück zum Zitat Arbi K, Tabellout M, Sanz J (2010) NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2−xZrx(PO4)3 (0 ≤ x ≤ 2). Solid State Ion 180:1613–1619 Arbi K, Tabellout M, Sanz J (2010) NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2xZrx(PO4)3 (0 ≤ x ≤ 2). Solid State Ion 180:1613–1619
20.
Zurück zum Zitat Kahlaoui R, Arbi K, Jimenez R, Sobrados I, Sanz J, Ternane R (2018) Distribution and mobility of lithium in NASICON-type Li1−xTi2−xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds. Mater Res Bull 101:146–154 Kahlaoui R, Arbi K, Jimenez R, Sobrados I, Sanz J, Ternane R (2018) Distribution and mobility of lithium in NASICON-type Li1xTi2xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds. Mater Res Bull 101:146–154
21.
Zurück zum Zitat Orliukas AF, Venckutė V, Miškinis J, Kazlauskienė V, Petrulionis D, Šalkus T, Dindune A, Kanepe Z, Ronis J, Žukauskas T, Maneikis A, Kežionis A (2013) X-ray photoelectron and broadband impedance spectroscopy of Li1+4xTi2−x(PO4)3 solid electrolyte ceramics. Lith J Phys 53:244–254 Orliukas AF, Venckutė V, Miškinis J, Kazlauskienė V, Petrulionis D, Šalkus T, Dindune A, Kanepe Z, Ronis J, Žukauskas T, Maneikis A, Kežionis A (2013) X-ray photoelectron and broadband impedance spectroscopy of Li1+4xTi2x(PO4)3 solid electrolyte ceramics. Lith J Phys 53:244–254
22.
Zurück zum Zitat Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+xTi2−xAlx(PO4)3: impedance, X-ray and NMR studies. Solid State Ion 136:339–344 Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+xTi2xAlx(PO4)3: impedance, X-ray and NMR studies. Solid State Ion 136:339–344
23.
Zurück zum Zitat Bhanja P, Senthil C, Patra AK, Sasidharan M, Bhaumik A (2017) NASICON type ordered mesoporous lithium–aluminium–titanium–phosphate as electrode material for lithium-ion batteries. Micropor Mesopor Mater 240:57–64 Bhanja P, Senthil C, Patra AK, Sasidharan M, Bhaumik A (2017) NASICON type ordered mesoporous lithium–aluminium–titanium–phosphate as electrode material for lithium-ion batteries. Micropor Mesopor Mater 240:57–64
24.
Zurück zum Zitat Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71 Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71
25.
Zurück zum Zitat Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. J Phys B 192:55–69 Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. J Phys B 192:55–69
26.
Zurück zum Zitat Bruker WINFIT Program (1994) Bruker Rep. 140:43–46 Bruker WINFIT Program (1994) Bruker Rep. 140:43–46
27.
Zurück zum Zitat Kosova NV, Osintsev DI, Uvarov NF, Devyatkina ET (2005) Lithium titanium phosphate as cathode, anode, and electrolyte for lithium rechargeable batteries. Chem Sustain Dev 13:253–260 Kosova NV, Osintsev DI, Uvarov NF, Devyatkina ET (2005) Lithium titanium phosphate as cathode, anode, and electrolyte for lithium rechargeable batteries. Chem Sustain Dev 13:253–260
28.
29.
Zurück zum Zitat Bucheli W, Jiménez R, Sanz J (2012) The log(σ) vs. log(ω) derivative plot used to analyze the AC conductivity. Application to fast Li+ ion conductors with perovskite structure. Solid State Ion 227:113–118 Bucheli W, Jiménez R, Sanz J (2012) The log(σ) vs. log(ω) derivative plot used to analyze the AC conductivity. Application to fast Li+ ion conductors with perovskite structure. Solid State Ion 227:113–118
30.
Zurück zum Zitat Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr A32:757–767 Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr A32:757–767
31.
Zurück zum Zitat Roberson A, Fletcher JG, Skakle JMS, West AR (1993) Synthesis of LiTiPO5 and LiTiAsO5 with the α-FePO5 structure. J Solid State Chem 109:53–59 Roberson A, Fletcher JG, Skakle JMS, West AR (1993) Synthesis of LiTiPO5 and LiTiAsO5 with the α-FePO5 structure. J Solid State Chem 109:53–59
32.
Zurück zum Zitat Daidouh A, Veiga ML, Pico C, Martinez-Ripoll M (1997) A new polymorph of Li4P2O7. Acta Cryst C53:167–169 Daidouh A, Veiga ML, Pico C, Martinez-Ripoll M (1997) A new polymorph of Li4P2O7. Acta Cryst C53:167–169
33.
Zurück zum Zitat Arbi K, Jimenez R, Šalkus T, Orliukas AF, Sanz J (2015) On the influence of the cation vacancy on lithium conductivity of Li1+xRxTi2−x(PO4)3 Nasicon type materials. Solid State Ion 271:28–33 Arbi K, Jimenez R, Šalkus T, Orliukas AF, Sanz J (2015) On the influence of the cation vacancy on lithium conductivity of Li1+xRxTi2x(PO4)3 Nasicon type materials. Solid State Ion 271:28–33
34.
Zurück zum Zitat Kahlaoui R, Arbi K, Jimenez R, Sobrados I, Mehnaoui M, Sanz J, Ternane R (2017) Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1−xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials. Ionics 23:837–846 Kahlaoui R, Arbi K, Jimenez R, Sobrados I, Mehnaoui M, Sanz J, Ternane R (2017) Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials. Ionics 23:837–846
35.
Zurück zum Zitat Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S (1997) Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7. XRD and NMR Study. Chem Mater 9:996–1003 Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S (1997) Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7. XRD and NMR Study. Chem Mater 9:996–1003
36.
Zurück zum Zitat Schröder C, Ren J, Candida A, Rodrigues M, Eckert H (2014) Glass-to-crystal transition in Li1+xAlxGe2−x(PO4)3: structural aspects studied by solid state NMR. J Phys Chem C 118:9400–9411 Schröder C, Ren J, Candida A, Rodrigues M, Eckert H (2014) Glass-to-crystal transition in Li1+xAlxGe2x(PO4)3: structural aspects studied by solid state NMR. J Phys Chem C 118:9400–9411
37.
Zurück zum Zitat Kazakevicius E, Urcinskas A, Bagdonas B, Kežionis A, Orliukas AF, Dindune A, Kanepe Z, Ronis J (2005) Electrical properties of Li1.3M1.4Ti0.3Al0.3(PO4)3 (M = Ge, Zr) superionics ceramics. Lith J Phys 45:267–272 Kazakevicius E, Urcinskas A, Bagdonas B, Kežionis A, Orliukas AF, Dindune A, Kanepe Z, Ronis J (2005) Electrical properties of Li1.3M1.4Ti0.3Al0.3(PO4)3 (M = Ge, Zr) superionics ceramics. Lith J Phys 45:267–272
38.
Zurück zum Zitat Kwatek K, Nowiński JL (2018) Solid lithium ion conducting composites based on LiTi2(PO4)3 and Li2.9B0.9S0.1O3.1 glass. Solid State Ion 322:93–99 Kwatek K, Nowiński JL (2018) Solid lithium ion conducting composites based on LiTi2(PO4)3 and Li2.9B0.9S0.1O3.1 glass. Solid State Ion 322:93–99
39.
Zurück zum Zitat Arbi K, Bucheli W, Jimenez R, Sanz J (2015) High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J Eur Ceram Soc 35:1477–1484 Arbi K, Bucheli W, Jimenez R, Sanz J (2015) High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J Eur Ceram Soc 35:1477–1484
40.
Zurück zum Zitat Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammer GJ, Fleig J (2016) A microcontact impedance study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J Mater Chem A 4:1506–1513 Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammer GJ, Fleig J (2016) A microcontact impedance study on NASICON-type Li1+xAlxTi2x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J Mater Chem A 4:1506–1513
41.
Zurück zum Zitat Kazakevicious E, Dindunde A, Kanepe Z, Ronis J, Orliukas A, Keizonis A, Salkus T (2005) Impedance spectra of Li1.3Sc0.15Y0.15Ti1.7(PO4)3 solid electrolyte ceramics in a broad frequency range. Solid State Ion 176:1743–1746 Kazakevicious E, Dindunde A, Kanepe Z, Ronis J, Orliukas A, Keizonis A, Salkus T (2005) Impedance spectra of Li1.3Sc0.15Y0.15Ti1.7(PO4)3 solid electrolyte ceramics in a broad frequency range. Solid State Ion 176:1743–1746
42.
Zurück zum Zitat Venckutė V, Dobrovolskis P, Šalkus T, Kežionis A, Dindune A, Kanepe Z, Ronis J, Fung KZ, Orliukas AF (2015) Preparation and characterization of solid electrolytes based on TiP2O7 pyrophosphate. Ferroelectrics 479(1):101–109 Venckutė V, Dobrovolskis P, Šalkus T, Kežionis A, Dindune A, Kanepe Z, Ronis J, Fung KZ, Orliukas AF (2015) Preparation and characterization of solid electrolytes based on TiP2O7 pyrophosphate. Ferroelectrics 479(1):101–109
43.
Zurück zum Zitat Mertens A, Schön SYN, Gunduz DC, Tempel H, Schierholz R, Hausen F, Kungl H, Granwehr J, Eichel RA (2017) Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid State Ion 309:180–186 Mertens A, Schön SYN, Gunduz DC, Tempel H, Schierholz R, Hausen F, Kungl H, Granwehr J, Eichel RA (2017) Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Solid State Ion 309:180–186
44.
Zurück zum Zitat Kleitz M, Dessemond L, Steil MC (1995) Model for ion-blocking at internal interfaces in zirconias. Solid State Ion 75:107–115 Kleitz M, Dessemond L, Steil MC (1995) Model for ion-blocking at internal interfaces in zirconias. Solid State Ion 75:107–115
Metadaten
Titel
Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type materials
verfasst von
Radhouene Kahlaoui
Kamel Arbi
Ricardo Jimenez
Isabel Sobrados
Jesus Sanz
Riadh Ternane
Publikationsdatum
25.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04463-3

Weitere Artikel der Ausgabe 20/2020

Journal of Materials Science 20/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.