Skip to main content
Erschienen in: Journal of Materials Science 24/2020

04.05.2020 | Metals & corrosion

Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures

verfasst von: Chengxiong Duan, Jianguo Tang, Wenjing Ma, Lingying Ye, Haichun Jiang, Yunlai Deng, Xinming Zhang

Erschienen in: Journal of Materials Science | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The intergranular corrosion (IGC) behavior of an extruded 6005A alloy profile with the coexisting of peripheral coarse grain (PCG) structure and partial recrystallized grain (PRG) structure was investigated by using an accelerated corrosion test, electrochemical impedance spectroscopy and a quasi in situ examination of IGC process. PCG structure was found to have a unique IGC behavior that pitting corrosion and subsequent IGC are less severe and will not be transformed into intragranular corrosion as they were found in PRG structure. Microstructure characterization reveals that the microstructural differences in grain boundary precipitates, primary α-AlFeMnSi intermetallic particles and grain characteristic between PCG structure and PRG structure are the reason for these phenomena. Further analysis indicates that the grain boundaries decorated with more AlFeMnSi particles and Q phase precipitates are more sensitive to corrosion, where Q phase precipitates are the primary cathodes and the most important factor affecting IGC; AlFeMnSi particles are supposed to initiate pitting corrosion since they are dissolved as anodes in the early stage of corrosion. With the development of corrosion, they are transformed into cathodes and become the bridges of IGC propagation by connecting the Q phase precipitates at grain boundary. In addition, grain characteristic was also found to have great effects on IGC. With the decrease in grain size and the increase in the frequency of high-angle grain boundaries and the dislocation density, corrosion becomes more severe and more likely to be transformed into intragranular corrosion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang C, Wang C, Zhang Q, Zhao G, Chen L (2019) Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al–Mg–Si alloy. J Mater Process Technol 270:323–334 Zhang C, Wang C, Zhang Q, Zhao G, Chen L (2019) Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al–Mg–Si alloy. J Mater Process Technol 270:323–334
2.
Zurück zum Zitat Svenningsen G, Larsen MH, Walmsley JC, Nordlien JH, Nisancioglu K (2006) Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content. Corros Sci 48:1528–1543 Svenningsen G, Larsen MH, Walmsley JC, Nordlien JH, Nisancioglu K (2006) Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content. Corros Sci 48:1528–1543
3.
Zurück zum Zitat Svenningsen G, Lein JE, Bjorgum A, Nordlien JH, Yu YD, Nisancioglu K (2006) Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros Sci 48:226–242 Svenningsen G, Lein JE, Bjorgum A, Nordlien JH, Yu YD, Nisancioglu K (2006) Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys. Corros Sci 48:226–242
4.
Zurück zum Zitat Larsen MH, Walmsley JC, Lunder O, Mathiesen RH, Nisancioglu K (2008) Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J Electrochem Soc 155:C550–C556 Larsen MH, Walmsley JC, Lunder O, Mathiesen RH, Nisancioglu K (2008) Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J Electrochem Soc 155:C550–C556
5.
Zurück zum Zitat Zou Y, Liu Q, Jia ZH, Xing Y, Ding LP, Wang XL (2017) The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl Surf Sci 405:489–496 Zou Y, Liu Q, Jia ZH, Xing Y, Ding LP, Wang XL (2017) The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl Surf Sci 405:489–496
6.
Zurück zum Zitat Liang WJ, Rometsch PA, Cao LF, Birbilis N (2013) General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu. Corros Sci 76:119–128 Liang WJ, Rometsch PA, Cao LF, Birbilis N (2013) General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu. Corros Sci 76:119–128
7.
Zurück zum Zitat El-Menshawy K, El-Sayed AWA, El-Bedawy ME, Ahmed HA, El-Raghy SM (2012) Effect of aging time at low aging temperatures on the corrosion of aluminium alloy 6061. Corros Sci 54:167–173 El-Menshawy K, El-Sayed AWA, El-Bedawy ME, Ahmed HA, El-Raghy SM (2012) Effect of aging time at low aging temperatures on the corrosion of aluminium alloy 6061. Corros Sci 54:167–173
8.
Zurück zum Zitat Larsen MH, Walmsley JC, Lunder O, Nisancioglu K (2010) Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminium alloys. J Electrochem Soc 157:C61–C68 Larsen MH, Walmsley JC, Lunder O, Nisancioglu K (2010) Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminium alloys. J Electrochem Soc 157:C61–C68
9.
Zurück zum Zitat Kairy SK, Alam T, Rometsch PA, Davies CHJ, Banerjee R, Birbilis N (2016) Understanding the origins of intergranular corrosion in copper-containing Al–Mg–Si alloys. Metall Mater Trans A Phys Metall Mater Sci 47A:985–989 Kairy SK, Alam T, Rometsch PA, Davies CHJ, Banerjee R, Birbilis N (2016) Understanding the origins of intergranular corrosion in copper-containing Al–Mg–Si alloys. Metall Mater Trans A Phys Metall Mater Sci 47A:985–989
10.
Zurück zum Zitat Guillaumin V, Mankowski G (2000) Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros Sci 42:105–125 Guillaumin V, Mankowski G (2000) Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros Sci 42:105–125
11.
Zurück zum Zitat Zhang WL, Frankel GS (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48:1193–1210 Zhang WL, Frankel GS (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48:1193–1210
12.
Zurück zum Zitat Chen MY, Deng YL, Tang JG, Fan ST, Zhang XM (2019) A study of the crystallographic pitting behavior of Al-0.54 Mg-0.66 Si aluminum alloy in acidic chloride solutions. Mater Charact 148:259–265 Chen MY, Deng YL, Tang JG, Fan ST, Zhang XM (2019) A study of the crystallographic pitting behavior of Al-0.54 Mg-0.66 Si aluminum alloy in acidic chloride solutions. Mater Charact 148:259–265
13.
Zurück zum Zitat Zhang XX, Zhou XR, Hashimoto T et al (2017) The influence of grain structure on the corrosion behaviour of 2A97-T3 Al–Cu–Li alloy. Corros Sci 116:14–21 Zhang XX, Zhou XR, Hashimoto T et al (2017) The influence of grain structure on the corrosion behaviour of 2A97-T3 Al–Cu–Li alloy. Corros Sci 116:14–21
14.
Zurück zum Zitat Zhang XX, Zhou XR, Hashimoto T et al (2018) Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: the influence of non-uniform precipitation. Corros Sci 132:1–8 Zhang XX, Zhou XR, Hashimoto T et al (2018) Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: the influence of non-uniform precipitation. Corros Sci 132:1–8
15.
Zurück zum Zitat Luo C, Zhou X, Thompson GE, Hughes AE (2012) Observations of intergranular corrosion in AA2024-T351: the influence of grain stored energy. Corros Sci 61:35–44 Luo C, Zhou X, Thompson GE, Hughes AE (2012) Observations of intergranular corrosion in AA2024-T351: the influence of grain stored energy. Corros Sci 61:35–44
16.
Zurück zum Zitat Ly R, Hartwig KT, Castaneda H (2018) Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061. Corros Sci 139:47–57 Ly R, Hartwig KT, Castaneda H (2018) Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061. Corros Sci 139:47–57
17.
Zurück zum Zitat Guerin M, Alexis J, Andrieu E, Laffont L, Lefebvre W, Odemer G, Blanc C (2016) Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy. Corros Sci 102:291–300 Guerin M, Alexis J, Andrieu E, Laffont L, Lefebvre W, Odemer G, Blanc C (2016) Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy. Corros Sci 102:291–300
18.
Zurück zum Zitat Zhang XX, Jiao YB, Yu Y, Liu B, Hashimoto T, Liu HF, Dong ZH (2019) Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction. Corros Sci 155:1–12 Zhang XX, Jiao YB, Yu Y, Liu B, Hashimoto T, Liu HF, Dong ZH (2019) Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction. Corros Sci 155:1–12
19.
Zurück zum Zitat Chakrabarti DJ, Laughlin DE (2004) Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci 49:389–410 Chakrabarti DJ, Laughlin DE (2004) Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci 49:389–410
20.
Zurück zum Zitat Kairy SK, Rometsch PA, Diao K, Nie JF, Davies CHJ, Birbilis N (2016) Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure. Electrochim Acta 190:92–103 Kairy SK, Rometsch PA, Diao K, Nie JF, Davies CHJ, Birbilis N (2016) Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure. Electrochim Acta 190:92–103
21.
Zurück zum Zitat Kairy SK, Birbilis N, Rometsch PA, Davies CHJ (2015) The influence of copper additions and aging on the microstructure and metastable pitting of Al–Mg–Si alloys. Corrosion 71:1304–1307 Kairy SK, Birbilis N, Rometsch PA, Davies CHJ (2015) The influence of copper additions and aging on the microstructure and metastable pitting of Al–Mg–Si alloys. Corrosion 71:1304–1307
22.
Zurück zum Zitat Kairy SK, Rometsch PA, Davies C, Birbilis N (2017) On the intergranular corrosion and hardness evolution of 6xxx series Al-alloys as a function of Si: Mg ratio, Cu content and ageing condition. Corrosion 73:1280–1295 Kairy SK, Rometsch PA, Davies C, Birbilis N (2017) On the intergranular corrosion and hardness evolution of 6xxx series Al-alloys as a function of Si: Mg ratio, Cu content and ageing condition. Corrosion 73:1280–1295
23.
Zurück zum Zitat Kairy SK, Rometsch P, Davies C, Birbilis N (2017) On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series Al-alloys. Corrosion 73:87–99 Kairy SK, Rometsch P, Davies C, Birbilis N (2017) On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series Al-alloys. Corrosion 73:87–99
24.
Zurück zum Zitat Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy. Corros Sci 48:258–272 Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy. Corros Sci 48:258–272
25.
Zurück zum Zitat Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy. Corros Sci 48:3969–3987 Svenningsen G, Larsen MH, Nordlien JH, Nisancioglu K (2006) Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy. Corros Sci 48:3969–3987
26.
Zurück zum Zitat Remoe MS, Marthinsen K, Westermann I, Pedersen KT, Royset J, Marioara C (2017) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 693:60–72 Remoe MS, Marthinsen K, Westermann I, Pedersen KT, Royset J, Marioara C (2017) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 693:60–72
27.
Zurück zum Zitat Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta 52:7651–7659 Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Role of intermetallic phases in localized corrosion of AA5083. Electrochim Acta 52:7651–7659
28.
Zurück zum Zitat Birbilis N, Buchheit RG (2005) Electrochemical characteristics of intermetallic phases in aluminum alloys—an experimental survey and discussion. J Electrochem Soc 152:B140–B151 Birbilis N, Buchheit RG (2005) Electrochemical characteristics of intermetallic phases in aluminum alloys—an experimental survey and discussion. J Electrochem Soc 152:B140–B151
29.
Zurück zum Zitat Zander D, Schnatterer C, Altenbach C, Chaineux V (2015) Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires. Mater Des 83:49–59 Zander D, Schnatterer C, Altenbach C, Chaineux V (2015) Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires. Mater Des 83:49–59
30.
Zurück zum Zitat Kumari S, Wenner S, Walmsley JC, Lunder O, Nisancioglu K (2019) Progress in understanding initiation of intergranular corrosion on AA6005 aluminum alloy with low copper content. J Electrochem Soc 166:C3114–C3123 Kumari S, Wenner S, Walmsley JC, Lunder O, Nisancioglu K (2019) Progress in understanding initiation of intergranular corrosion on AA6005 aluminum alloy with low copper content. J Electrochem Soc 166:C3114–C3123
31.
Zurück zum Zitat Li H, Zhao PP, Wang ZX, Mao QZ, Fang BJ, Song RG, Zheng ZG (2016) The intergranular corrosion susceptibility of a heavily overaged Al–Mg–Si–Cu alloy. Corros Sci 107:113–122 Li H, Zhao PP, Wang ZX, Mao QZ, Fang BJ, Song RG, Zheng ZG (2016) The intergranular corrosion susceptibility of a heavily overaged Al–Mg–Si–Cu alloy. Corros Sci 107:113–122
32.
Zurück zum Zitat De Pari L, Misiolek WZ (2008) Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling. Acta Mater 56:6174–6185 De Pari L, Misiolek WZ (2008) Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling. Acta Mater 56:6174–6185
33.
Zurück zum Zitat Minoda T, Yoshida H (2002) Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metall Mater Trans A Phys Metall Mater Sci 33:2891–2898 Minoda T, Yoshida H (2002) Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metall Mater Trans A Phys Metall Mater Sci 33:2891–2898
34.
Zurück zum Zitat Wloka J, Hack T, Virtanen S (2007) Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys. Corros Sci 49:1437–1449 Wloka J, Hack T, Virtanen S (2007) Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys. Corros Sci 49:1437–1449
35.
Zurück zum Zitat Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204 Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204
36.
Zurück zum Zitat Zhang XX, Zhou XR, Nilsson JO, Dong ZH, Cai CR (2018) Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: recrystallized and non-recrystallized structures. Corros Sci 144:163–171 Zhang XX, Zhou XR, Nilsson JO, Dong ZH, Cai CR (2018) Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: recrystallized and non-recrystallized structures. Corros Sci 144:163–171
37.
Zurück zum Zitat Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N (2014) Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution. Corros Sci 87:504–516 Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N (2014) Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution. Corros Sci 87:504–516
38.
Zurück zum Zitat Cabot PL, Garrido JA, Perez E, Moreira AH, Sumodjo PTA, Proud W (1995) Eis study of heat-treated Al–Zn–Mg alloys in the passive and transpassive potential regions. Electrochim Acta 40:447–454 Cabot PL, Garrido JA, Perez E, Moreira AH, Sumodjo PTA, Proud W (1995) Eis study of heat-treated Al–Zn–Mg alloys in the passive and transpassive potential regions. Electrochim Acta 40:447–454
39.
Zurück zum Zitat Chen WC, Wen TC, Gopalan A (2002) Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth Met 128:179–189 Chen WC, Wen TC, Gopalan A (2002) Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth Met 128:179–189
40.
Zurück zum Zitat Suter T, Alkire RC (2001) Microelectrochemical studies of pit initiation at single inclusions in Al 2024-T3. J Electrochem Soc 148:B36–B42 Suter T, Alkire RC (2001) Microelectrochemical studies of pit initiation at single inclusions in Al 2024-T3. J Electrochem Soc 148:B36–B42
41.
Zurück zum Zitat Tan L, Allen TR (2010) Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 52:548–554 Tan L, Allen TR (2010) Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 52:548–554
42.
Zurück zum Zitat Yang WC, Ji SX, Li Z, Wang MP (2015) Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al–Mg–Si–Cu alloy. J Alloy Compd 624:27–30 Yang WC, Ji SX, Li Z, Wang MP (2015) Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al–Mg–Si–Cu alloy. J Alloy Compd 624:27–30
43.
Zurück zum Zitat Liu Y, Zhou X, Thompson GE, Hashimoto T, Scamans GM, Afseth A (2007) Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater 55:353–360 Liu Y, Zhou X, Thompson GE, Hashimoto T, Scamans GM, Afseth A (2007) Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater 55:353–360
44.
Zurück zum Zitat Zhang RF, Qiu Y, Qi YS, Birbilis N (2018) A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al–Mg alloy. Corros Sci 133:1–5 Zhang RF, Qiu Y, Qi YS, Birbilis N (2018) A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al–Mg alloy. Corros Sci 133:1–5
45.
Zurück zum Zitat Wang ZX, Zhu F, Zheng K et al (2018) Effect of the thickness reduction on intergranular corrosion in an under-aged Al–Mg–Si–Cu alloy during cold-rolling. Corros Sci 142:201–212 Wang ZX, Zhu F, Zheng K et al (2018) Effect of the thickness reduction on intergranular corrosion in an under-aged Al–Mg–Si–Cu alloy during cold-rolling. Corros Sci 142:201–212
46.
Zurück zum Zitat Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater 58:994–997 Pantleon W (2008) Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater 58:994–997
47.
Zurück zum Zitat Soltis J (2015) Passivity breakdown, pit initiation and propagation of pits in metallic materials—review. Corros Sci 90:5–22 Soltis J (2015) Passivity breakdown, pit initiation and propagation of pits in metallic materials—review. Corros Sci 90:5–22
48.
Zurück zum Zitat Eckermann F, Suter T, Uggowitzer P, Afseth A, Schmutz P (2008) The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim Acta 54:844–855 Eckermann F, Suter T, Uggowitzer P, Afseth A, Schmutz P (2008) The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim Acta 54:844–855
49.
Zurück zum Zitat Shen PY, Tang JG, Ye LY, Duan CX, Den YL (6005A) Effect of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A. Chin J Mater Res 32:751–758 (in Chinese) Shen PY, Tang JG, Ye LY, Duan CX, Den YL (6005A) Effect of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A. Chin J Mater Res 32:751–758 (in Chinese)
Metadaten
Titel
Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures
verfasst von
Chengxiong Duan
Jianguo Tang
Wenjing Ma
Lingying Ye
Haichun Jiang
Yunlai Deng
Xinming Zhang
Publikationsdatum
04.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04692-6

Weitere Artikel der Ausgabe 24/2020

Journal of Materials Science 24/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.