Skip to main content
Erschienen in: Journal of Materials Science 1/2021

14.09.2020 | Metals & corrosion

Microstructural development in DED stainless steels: applying welding models to elucidate the impact of processing and alloy composition

verfasst von: Thale R. Smith, Joshua D. Sugar, Chris San Marchi, Julie M. Schoenung

Erschienen in: Journal of Materials Science | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Austenitic stainless steel microstructures produced by directed energy deposition (DED) are analogous to those developed during welding, particularly high energy density welding. To better understand microstructural development during DED, theories of microstructural evolution, which have been established to contextualize weld microstructures, are applied in this study to microstructural development in DED austenitic stainless steels. Phenomenological welding models that describe the development of oxide inclusions, compositional microsegregation, ferrite, matrix austenite grains, and dislocation substructures are utilized to clarify microstructural evolution during deposition of austenitic stainless steels. Two different alloys, 304L and 316L, are compared to demonstrate the broad applicability of this framework for understanding microstructural development during the DED process. Despite differences in grain morphology and solidification mode for these two alloys (which can be attributed to compositional differences), similar tensile properties are achieved. It is the fine-scale compositional segregation and dislocation structures that ultimately determine the strength of these materials. The evolution of microsegregation and dislocation structures is shown to be dependent on the rapid solidification and thermomechanical history of the DED processing method and not the composition of the starting material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Griffith ML, Ensz MT, Puskar JD, Robino CV, Brooks JA, Philliber JA, Smugeresky JE, Hofmeister WH (2000) Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Proc 625:9–20 Griffith ML, Ensz MT, Puskar JD, Robino CV, Brooks JA, Philliber JA, Smugeresky JE, Hofmeister WH (2000) Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Proc 625:9–20
2.
Zurück zum Zitat Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39A(9):2237–2245 Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39A(9):2237–2245
3.
Zurück zum Zitat Ma M, Wang Z, Wang D, Zeng X (2013) Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt Laser Technol 45:209–216 Ma M, Wang Z, Wang D, Zeng X (2013) Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt Laser Technol 45:209–216
4.
Zurück zum Zitat Yu J, Rombouts M, Maes G (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Mater Design 45:228–235 Yu J, Rombouts M, Maes G (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Mater Design 45:228–235
5.
Zurück zum Zitat Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by laser metal deposition shaping. Mater Design 55:104–119 Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by laser metal deposition shaping. Mater Design 55:104–119
6.
Zurück zum Zitat Smugeresky JE, Harris MF, Griffith ML, Gill DD, Robino CV (2004) On the interface between LENS deposited stainless steel 304L repair geometry and cast or machined components, SAND2004-4035 Smugeresky JE, Harris MF, Griffith ML, Gill DD, Robino CV (2004) On the interface between LENS deposited stainless steel 304L repair geometry and cast or machined components, SAND2004-4035
7.
Zurück zum Zitat Xue Y, Pascu A, Horstemeyer MF, Wang L, Wang PT (2010) Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater 58(11):4029–4038 Xue Y, Pascu A, Horstemeyer MF, Wang L, Wang PT (2010) Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater 58(11):4029–4038
8.
Zurück zum Zitat Yadollahi A, Shamsaei N, Thompson SM, Seely D (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183 Yadollahi A, Shamsaei N, Thompson SM, Seely D (2015) Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A 644:171–183
9.
Zurück zum Zitat Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235 Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235
10.
Zurück zum Zitat Marya M, Singh V, Marya S, Hascoet JY (2015) Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part. Metall Mater Trans B 46(4):1654–1665 Marya M, Singh V, Marya S, Hascoet JY (2015) Microstructural development and technical challenges in laser additive manufacturing: case study with a 316L industrial part. Metall Mater Trans B 46(4):1654–1665
11.
Zurück zum Zitat de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater. Design 55:526–532 de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater. Design 55:526–532
12.
Zurück zum Zitat Hofmeister W, Griffith M, Ensz M, Smugeresky J (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34 Hofmeister W, Griffith M, Ensz M, Smugeresky J (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34
13.
Zurück zum Zitat Brooks JA, Headley TJ, Robino CV (2000) Microstructures of laser deposited 304L austenitic stainless steel. MRS Proc 625:21–30 Brooks JA, Headley TJ, Robino CV (2000) Microstructures of laser deposited 304L austenitic stainless steel. MRS Proc 625:21–30
14.
Zurück zum Zitat Yang N, Yee J, Zheng B, Gaiser K, Reynolds T, Clemon L, Lu WY, Schoenung JM, Lavernia EJ (2016) Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering. J Therm Spray Technol 26:1–17 Yang N, Yee J, Zheng B, Gaiser K, Reynolds T, Clemon L, Lu WY, Schoenung JM, Lavernia EJ (2016) Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering. J Therm Spray Technol 26:1–17
15.
Zurück zum Zitat Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng, A 677:1–10 Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng, A 677:1–10
16.
Zurück zum Zitat Smith TR, Sugar JD, Schoenung JM, SanMarchi C (2018) Anomalous annealing response of directed energy deposited type 304L austenitic stainless steel. JOM 70(3):358–363 Smith TR, Sugar JD, Schoenung JM, SanMarchi C (2018) Anomalous annealing response of directed energy deposited type 304L austenitic stainless steel. JOM 70(3):358–363
17.
Zurück zum Zitat Headley TJ, Brooks JA (2002) A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall Mater Trans A 33(1):5–15 Headley TJ, Brooks JA (2002) A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall Mater Trans A 33(1):5–15
18.
Zurück zum Zitat Brown DW, Adams DP, Balogh L, Carpenter JS, Clausen B, King G, Reedlunn B, Palmer TA, Maguire MC, Vogel SC (2017) In situ neutron diffraction study of the influence of microstructure on the mechanical response of additively manufactured 304L stainless steel. Metall Mater Trans A 48(12):6055–6069 Brown DW, Adams DP, Balogh L, Carpenter JS, Clausen B, King G, Reedlunn B, Palmer TA, Maguire MC, Vogel SC (2017) In situ neutron diffraction study of the influence of microstructure on the mechanical response of additively manufactured 304L stainless steel. Metall Mater Trans A 48(12):6055–6069
19.
Zurück zum Zitat Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. Wiley, Hoboken Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. Wiley, Hoboken
20.
Zurück zum Zitat Easterling K (2003) Introduction to the physical metallurgy of welding. Elsevier, Amsterdam Easterling K (2003) Introduction to the physical metallurgy of welding. Elsevier, Amsterdam
21.
Zurück zum Zitat David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245 David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34(1):213–245
22.
Zurück zum Zitat Lippold J (1994) Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels. Weld J 73(6):129–139 Lippold J (1994) Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels. Weld J 73(6):129–139
23.
Zurück zum Zitat Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev 36(1):16–44 Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev 36(1):16–44
24.
Zurück zum Zitat Smith TR, Sugar JD, SanMarchi C, Schoenung JM (2019) Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 164:728–740 Smith TR, Sugar JD, SanMarchi C, Schoenung JM (2019) Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Mater. 164:728–740
25.
Zurück zum Zitat Kotecki D, Siewert T (1992) WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178 Kotecki D, Siewert T (1992) WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178
26.
27.
Zurück zum Zitat Liu S, Olson DL (1987) The influence of inclusion chemical composition on weld metal microstructure. J Mater Eng 9(3):237–251 Liu S, Olson DL (1987) The influence of inclusion chemical composition on weld metal microstructure. J Mater Eng 9(3):237–251
28.
29.
Zurück zum Zitat Goodwin SJ, Noble FW, Eyre BL (1989) Inclusion nucleated ductile fracture in stainless steel. Acta Metall Mater 37(5):1389–1398 Goodwin SJ, Noble FW, Eyre BL (1989) Inclusion nucleated ductile fracture in stainless steel. Acta Metall Mater 37(5):1389–1398
30.
Zurück zum Zitat Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Design 104:197–204 Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Design 104:197–204
31.
Zurück zum Zitat Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229 Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229
32.
Zurück zum Zitat Yadollahi A, Shamsaei N, Hammi Y, Horstemeyer MF (2016) Quantification of tensile damage evolution in additive manufactured austenitic stainless steels. Mater Sci Eng, A 657:399–405 Yadollahi A, Shamsaei N, Hammi Y, Horstemeyer MF (2016) Quantification of tensile damage evolution in additive manufactured austenitic stainless steels. Mater Sci Eng, A 657:399–405
33.
Zurück zum Zitat Grong Ø, Kluken AO, Nylund HK, Dons AL, Hjelen J (1995) Catalyst effects in heterogeneous nucleation of acicular ferrite. Metall Mater Trans A 26(3):525–534 Grong Ø, Kluken AO, Nylund HK, Dons AL, Hjelen J (1995) Catalyst effects in heterogeneous nucleation of acicular ferrite. Metall Mater Trans A 26(3):525–534
34.
Zurück zum Zitat Hsieh KC, Babu SS, Vitek JM, David SA (1996) Calculation of inclusion formation in low-alloy-steel welds. Mater Sci Eng A 215(1):84–91 Hsieh KC, Babu SS, Vitek JM, David SA (1996) Calculation of inclusion formation in low-alloy-steel welds. Mater Sci Eng A 215(1):84–91
35.
Zurück zum Zitat Hong T, Debroy T, Babu SS, David SA (2000) Modeling of inclusion growth and dissolution in the weld pool. Metall Mater Trans B 31(1):161–169 Hong T, Debroy T, Babu SS, David SA (2000) Modeling of inclusion growth and dissolution in the weld pool. Metall Mater Trans B 31(1):161–169
36.
Zurück zum Zitat Babu S, Reidenbach F, David S, Böllinghaus T, Hoffmeister H (2013) Effect of high energy density welding processes on inclusion and microstructure formation in steel welds. Sci Technol Weld Join 4(2):63–73 Babu S, Reidenbach F, David S, Böllinghaus T, Hoffmeister H (2013) Effect of high energy density welding processes on inclusion and microstructure formation in steel welds. Sci Technol Weld Join 4(2):63–73
37.
Zurück zum Zitat Babu S, David S, Vitek J, Mundra K, DebRoy T (1995) Development of macro-and microstructures of Carbon-Manganese low alloy steel welds: inclusion formation. Mater Sci Technol 11(2):186–199 Babu S, David S, Vitek J, Mundra K, DebRoy T (1995) Development of macro-and microstructures of Carbon-Manganese low alloy steel welds: inclusion formation. Mater Sci Technol 11(2):186–199
38.
Zurück zum Zitat Lu S, Fujii H, Sugiyama H, Tanaka M, Nogi K (2003) Effects of oxygen additions to argon shielding gas on GTA weld shape. ISIJ Int 43(10):1590–1595 Lu S, Fujii H, Sugiyama H, Tanaka M, Nogi K (2003) Effects of oxygen additions to argon shielding gas on GTA weld shape. ISIJ Int 43(10):1590–1595
39.
Zurück zum Zitat Lu S, Fujii H, Nogi K (2004) Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding. Scr Mater 51(3):271–277 Lu S, Fujii H, Nogi K (2004) Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding. Scr Mater 51(3):271–277
40.
Zurück zum Zitat Zou Y, Ueji R, Fujii H (2014) Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Mater Charact 91:42–49 Zou Y, Ueji R, Fujii H (2014) Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Mater Charact 91:42–49
41.
Zurück zum Zitat Syed AA, Denoirjean A, Fauchais P, Labbe JC (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14):4368–4382 Syed AA, Denoirjean A, Fauchais P, Labbe JC (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14):4368–4382
42.
Zurück zum Zitat Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al–Ti–Si–Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349 Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al–Ti–Si–Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349
43.
Zurück zum Zitat Hofmeister W, Wert M, Smugeresky J, Philliber JA, Griffith M, Ensz M (1999) Investigating solidification with the laser-engineered net shaping (LENS™) process. JOM 51(7):1–6 Hofmeister W, Wert M, Smugeresky J, Philliber JA, Griffith M, Ensz M (1999) Investigating solidification with the laser-engineered net shaping (LENS™) process. JOM 51(7):1–6
44.
Zurück zum Zitat Babu SS (2004) The mechanism of acicular ferrite in weld deposits. Curr Opin Solid State Mater Sci 8(3–4):267–278 Babu SS (2004) The mechanism of acicular ferrite in weld deposits. Curr Opin Solid State Mater Sci 8(3–4):267–278
45.
Zurück zum Zitat Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39A(9):2228–2236 Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39A(9):2228–2236
46.
Zurück zum Zitat Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti–6Al–4V and high-entropy alloys. Sci Technol Adv Mater 18(1):584–610 Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti–6Al–4V and high-entropy alloys. Sci Technol Adv Mater 18(1):584–610
47.
Zurück zum Zitat Scipioni Bertoli U, Guss G, Wu S, Matthews MJ, Schoenung JM (2017) In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Design 135:385–396 Scipioni Bertoli U, Guss G, Wu S, Matthews MJ, Schoenung JM (2017) In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Design 135:385–396
48.
Zurück zum Zitat Scipioni Bertoli U, MacDonald BE, Schoenung JM (2019) Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater Sci Eng A 739:109–117 Scipioni Bertoli U, MacDonald BE, Schoenung JM (2019) Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater Sci Eng A 739:109–117
49.
Zurück zum Zitat Elmer JW, Wong J, Ressler T (2000) In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved x-ray diffraction. Scr Mater 43(8):751–757 Elmer JW, Wong J, Ressler T (2000) In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved x-ray diffraction. Scr Mater 43(8):751–757
50.
Zurück zum Zitat Lippold JC, Clark WA, Tumuluru M (1992) An investigation of weld metal interfaces. In: The Metal Science of Joining. The Metals, Minerals and Materials Society, Warrendale, PA, pp. 141–146 Lippold JC, Clark WA, Tumuluru M (1992) An investigation of weld metal interfaces. In: The Metal Science of Joining. The Metals, Minerals and Materials Society, Warrendale, PA, pp. 141–146
51.
Zurück zum Zitat Elmer JW, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans A 20(10):2117–2131 Elmer JW, Allen SM, Eagar TW (1989) Microstructural development during solidification of stainless steel alloys. Metall Trans A 20(10):2117–2131
52.
Zurück zum Zitat Elmer JW (1988) The influence of cooling rate on the microstructure of stainless steel alloys. Lawrence Livermore National Laboratory, Livermore Elmer JW (1988) The influence of cooling rate on the microstructure of stainless steel alloys. Lawrence Livermore National Laboratory, Livermore
53.
Zurück zum Zitat Brooks JA, Williams JC, Thompson AW (1983) STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A 14(1):23–31 Brooks JA, Williams JC, Thompson AW (1983) STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A 14(1):23–31
54.
Zurück zum Zitat Koseki T, Inoue H, Fukuda Y, Nogami A (2003) Numerical simulation of equiaxed grain formation in weld solidification. Sci Technol Adv Mater 4(2):183–195 Koseki T, Inoue H, Fukuda Y, Nogami A (2003) Numerical simulation of equiaxed grain formation in weld solidification. Sci Technol Adv Mater 4(2):183–195
55.
Zurück zum Zitat Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549(7672):365 Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549(7672):365
56.
Zurück zum Zitat Basak A, Das S (2016) Epitaxy and microstructure evolution in metal additive manufacturing. Annu. Rev. Mat. Res. 46(1):125–149 Basak A, Das S (2016) Epitaxy and microstructure evolution in metal additive manufacturing. Annu. Rev. Mat. Res. 46(1):125–149
57.
Zurück zum Zitat Dupont JN (2011) ASM handbook, pp 96–113 Dupont JN (2011) ASM handbook, pp 96–113
58.
Zurück zum Zitat Rappaz M, Vitek JM, David SA, Boatner LA (1993) Microstructural formation in longitudinal bicrystal welds. Metall Trans A 24(6):1433–1446 Rappaz M, Vitek JM, David SA, Boatner LA (1993) Microstructural formation in longitudinal bicrystal welds. Metall Trans A 24(6):1433–1446
59.
Zurück zum Zitat Rappaz M, David S, Vitek J, Boatner L (1990) Analysis of solidification microstructures in Fe–Ni–Cr single-crystal welds. Metall Trans A 21(6):1767–1782 Rappaz M, David S, Vitek J, Boatner L (1990) Analysis of solidification microstructures in Fe–Ni–Cr single-crystal welds. Metall Trans A 21(6):1767–1782
60.
Zurück zum Zitat Rappaz M, David S, Vitek J, Boatner L (1989) Development of microstructures in Fe−15Ni−15Cr single crystal electron beam welds. Metall Trans A 20(6):1125–1138 Rappaz M, David S, Vitek J, Boatner L (1989) Development of microstructures in Fe−15Ni−15Cr single crystal electron beam welds. Metall Trans A 20(6):1125–1138
61.
Zurück zum Zitat Van der Drift A (1967) Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res Rep 22(3):267–288 Van der Drift A (1967) Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res Rep 22(3):267–288
62.
Zurück zum Zitat Terrassa KL, Smith TR, Jiang S, Sugar JD, Schoenung JM (2019) Improving build quality in directed energy deposition by cross-hatching. Mater Sci Eng, A 765:138269 Terrassa KL, Smith TR, Jiang S, Sugar JD, Schoenung JM (2019) Improving build quality in directed energy deposition by cross-hatching. Mater Sci Eng, A 765:138269
63.
Zurück zum Zitat King R, Stiegler J, Goodwin G (1974) Relation between mechanical properties and microstructure in CRE type 308 weldments. Weld J 53(7):307–313 King R, Stiegler J, Goodwin G (1974) Relation between mechanical properties and microstructure in CRE type 308 weldments. Weld J 53(7):307–313
64.
Zurück zum Zitat Lindgren LE (2001) Finite element modeling and simulation of welding. Part 2: improved material modeling. J Therm Stress 24(3):195–231 Lindgren LE (2001) Finite element modeling and simulation of welding. Part 2: improved material modeling. J Therm Stress 24(3):195–231
65.
Zurück zum Zitat Francis J, Bhadeshia H, Withers P (2007) Welding residual stresses in ferritic power plant steels. Mater Sci Technol 23(9):1009–1020 Francis J, Bhadeshia H, Withers P (2007) Welding residual stresses in ferritic power plant steels. Mater Sci Technol 23(9):1009–1020
66.
Zurück zum Zitat Mark AF, Francis JA, Dai H, Turski M, Hurrell PR, Bate SK, Kornmeier JR, Withers PJ (2012) On the evolution of local material properties and residual stress in a three-pass SA508 steel weld. Acta Mater 60(8):3268–3278 Mark AF, Francis JA, Dai H, Turski M, Hurrell PR, Bate SK, Kornmeier JR, Withers PJ (2012) On the evolution of local material properties and residual stress in a three-pass SA508 steel weld. Acta Mater 60(8):3268–3278
67.
Zurück zum Zitat Smith MC, Nadri B, Smith AC, Carr DG, Bendeich PJ, Edwards LE (2009) Pressure vessels and piping conference (PVP 2009), ASME Smith MC, Nadri B, Smith AC, Carr DG, Bendeich PJ, Edwards LE (2009) Pressure vessels and piping conference (PVP 2009), ASME
68.
Zurück zum Zitat Turski M, Smith M, Bouchard P, Edwards L, Withers P (2009) Spatially resolved materials property data from a uniaxial cross-weld tensile test. J Press Vess Technol 131(6):061406 Turski M, Smith M, Bouchard P, Edwards L, Withers P (2009) Spatially resolved materials property data from a uniaxial cross-weld tensile test. J Press Vess Technol 131(6):061406
69.
Zurück zum Zitat Murakawa H, Béreš M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Joining 15(5):393–399 Murakawa H, Béreš M, Davies CM, Rashed S, Vega A, Tsunori M, Nikbin KM, Dye D (2010) Effect of low transformation temperature weld filler metal on welding residual stress. Sci Technol Weld Joining 15(5):393–399
70.
Zurück zum Zitat Stender ME, Beghini LL, Sugar JD, Veilleux MG, Subia SR, Smith TR, San Marchi CW, Brown AA, Dagel DJ (2018) A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Additive Manufacturing. 21:556–566 Stender ME, Beghini LL, Sugar JD, Veilleux MG, Subia SR, Smith TR, San Marchi CW, Brown AA, Dagel DJ (2018) A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Additive Manufacturing. 21:556–566
72.
Zurück zum Zitat Odnobokova M, Belyakov A, Kaibyshev R (2015) Development of nanocrystalline 304L stainless steel by large strain cold working. Metals 5(2):656–668 Odnobokova M, Belyakov A, Kaibyshev R (2015) Development of nanocrystalline 304L stainless steel by large strain cold working. Metals 5(2):656–668
73.
Zurück zum Zitat Kashyap BP, Tangri K (1995) On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater 43(11):3971–3981 Kashyap BP, Tangri K (1995) On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater 43(11):3971–3981
74.
Zurück zum Zitat Kashyap BP, Tangri K (1997) Hall–Petch relationship and substructural evolution in boron containing type 316L stainless steel. Acta Mater 45(6):2383–2395 Kashyap BP, Tangri K (1997) Hall–Petch relationship and substructural evolution in boron containing type 316L stainless steel. Acta Mater 45(6):2383–2395
75.
Zurück zum Zitat Smith TR (2018) Directed energy deposited austenitic stainless steels: a metallurgical investigation. University of California, Davis Smith TR (2018) Directed energy deposited austenitic stainless steels: a metallurgical investigation. University of California, Davis
Metadaten
Titel
Microstructural development in DED stainless steels: applying welding models to elucidate the impact of processing and alloy composition
verfasst von
Thale R. Smith
Joshua D. Sugar
Chris San Marchi
Julie M. Schoenung
Publikationsdatum
14.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05232-y

Weitere Artikel der Ausgabe 1/2021

Journal of Materials Science 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.