Skip to main content
Erschienen in: Journal of Materials Science 4/2021

26.10.2020 | Polymers & biopolymers

Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites

verfasst von: Yuhui Qiao, Amirjalal Jalali, Jinian Yang, Yuguang Chen, Shiwei Wang, Yongchao Jiang, Jianhua Hou, Jing Jiang, Qian Li, Chul B. Park

Erschienen in: Journal of Materials Science | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-isothermal crystallization kinetics of polypropylene (PP)/polytetrafluoroethylene (PTFE) fibrillated composites is presented. In-situ fibrillated PP/PTFE-composites containing 1 and 3 wt% PTFE were prepared by melt compounding using a twin-screw extruder. The morphology and non-isothermal crystallization behavior of the composites were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The Mo equation was used to analyze the kinetics of non-isothermal crystallization behavior. The PTFE created a three-dimensional (3-D) network. A low PTFE content promoted crystallization through fast nucleation, whereas a high PTFE content decreased the crystallization kinetics through hindering the crystal growth. These findings are all based on the Mo equation analysis. The activation energy and nucleation activity were also evaluated, and the way in which the PTFE nanofibers affected the crystallization was discussed in detail. Polarized optical microscopy images revealed that the size of PP spherulites decreased with the increase of PTFE content. Finally, the effect of PTFE on the crystalline phase of PP was investigated by wide angle X-ray diffraction.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Leaversuch RD (1996) Enhanced PP resins offer a wide balance of properties Modern plastics USA 26(7):46–49 Leaversuch RD (1996) Enhanced PP resins offer a wide balance of properties Modern plastics USA 26(7):46–49
2.
Zurück zum Zitat Naguib HE, Park CB, Reichelt N (2004) Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. J Appl Polym Sci 91:2661–2668 Naguib HE, Park CB, Reichelt N (2004) Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. J Appl Polym Sci 91:2661–2668
3.
Zurück zum Zitat Bao J-B, Junior AN, Weng G-S, Wang J, Fang Y-W, Hu G-H (2016) Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J Supercrits Fluids 111:63–73 Bao J-B, Junior AN, Weng G-S, Wang J, Fang Y-W, Hu G-H (2016) Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J Supercrits Fluids 111:63–73
4.
Zurück zum Zitat Fu D, Chen F, Kuang T, Li D, Peng X, Chiu DY, Lin CS, Lee LJ (2016) Supercritical CO2 foaming of pressure-induced-flow processed linear polypropylene. Mater Des 93:509–513 Fu D, Chen F, Kuang T, Li D, Peng X, Chiu DY, Lin CS, Lee LJ (2016) Supercritical CO2 foaming of pressure-induced-flow processed linear polypropylene. Mater Des 93:509–513
5.
Zurück zum Zitat Ali MABM, Nobukawa S, Yamaguchi M (2011) Morphology development of polytetrafluoroethylene in a polypropylene melt (IUPAC Technical report). Pure Appl Chem 83:1819–1830 Ali MABM, Nobukawa S, Yamaguchi M (2011) Morphology development of polytetrafluoroethylene in a polypropylene melt (IUPAC Technical report). Pure Appl Chem 83:1819–1830
6.
Zurück zum Zitat Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54:4617–4628 Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54:4617–4628
7.
Zurück zum Zitat Rizvi A, Tabatabaei A, Barzegari MR, Mahmood SH, Park CB (2013) In situ fibrillation of CO 2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54:4645–4652 Rizvi A, Tabatabaei A, Barzegari MR, Mahmood SH, Park CB (2013) In situ fibrillation of CO 2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54:4645–4652
8.
Zurück zum Zitat Wang K, Wu F, Zhai W, Zheng W (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129:2253–2260 Wang K, Wu F, Zhai W, Zheng W (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129:2253–2260
9.
Zurück zum Zitat Jurczuk K, Galeski A, Piorkowska E (2014) Strain hardening of molten thermoplastic polymers reinforced with poly (tetrafluoroethylene) nanofibers. J Rheol 58:589–605 Jurczuk K, Galeski A, Piorkowska E (2014) Strain hardening of molten thermoplastic polymers reinforced with poly (tetrafluoroethylene) nanofibers. J Rheol 58:589–605
10.
Zurück zum Zitat Miyamoto R, Utano T, Yasuhara S, Ishihara S, Ohshima M 2015 Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams, In AIP Conference proceedings, 040001 Miyamoto R, Utano T, Yasuhara S, Ishihara S, Ohshima M 2015 Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams, In AIP Conference proceedings, 040001
11.
Zurück zum Zitat Jurczuk K, Galeski A (2016) Thermoplastic elastomers reinforced with poly (tetrafluoroethylene) nanofibers. Eur Polym J 80:58–69 Jurczuk K, Galeski A (2016) Thermoplastic elastomers reinforced with poly (tetrafluoroethylene) nanofibers. Eur Polym J 80:58–69
12.
Zurück zum Zitat Peng X-F, Li K-C, Mi H-Y, Jing X, Chen B-Y (2016) Excellent properties and extrusion foaming behavior of PPC/PS/PTFE composites with an in situ fibrillated PTFE nanofibrillar network. RSC Adv 6:3176–3185 Peng X-F, Li K-C, Mi H-Y, Jing X, Chen B-Y (2016) Excellent properties and extrusion foaming behavior of PPC/PS/PTFE composites with an in situ fibrillated PTFE nanofibrillar network. RSC Adv 6:3176–3185
13.
Zurück zum Zitat van der Meer DW, Milazzo D, Sanguineti A, Vancso GJ (2005) Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds. Polym Eng Sci 45:458–468 van der Meer DW, Milazzo D, Sanguineti A, Vancso GJ (2005) Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds. Polym Eng Sci 45:458–468
14.
Zurück zum Zitat Yamaguchi M, Yokohara T, Ali MABM (2013) Effect of flexible fibers on rheological properties of poly (lactic acid) composites under elongational flow. Nihon Reoroji Gakkaishi 41:129–135 Yamaguchi M, Yokohara T, Ali MABM (2013) Effect of flexible fibers on rheological properties of poly (lactic acid) composites under elongational flow. Nihon Reoroji Gakkaishi 41:129–135
15.
Zurück zum Zitat Ali M, Bin MA, Okamoto K, Yamaguchi M, Kasai T, Koshirai A (2009) Rheological properties for polypropylene modified by polytetrafluoroethylene. J Polym Sci, Part B: Polym Phys 47:2008–2014 Ali M, Bin MA, Okamoto K, Yamaguchi M, Kasai T, Koshirai A (2009) Rheological properties for polypropylene modified by polytetrafluoroethylene. J Polym Sci, Part B: Polym Phys 47:2008–2014
16.
Zurück zum Zitat Rizvi A 2015 Functional polymer foams from in-situ fibrillated polymer blends University of Toronto Rizvi A 2015 Functional polymer foams from in-situ fibrillated polymer blends University of Toronto
17.
Zurück zum Zitat Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly (tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88:171–182 Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly (tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88:171–182
18.
Zurück zum Zitat Zhao J, Zhao Q, Wang C, Guo B, Park CB, Wang G (2017) High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater Des 131:1–11 Zhao J, Zhao Q, Wang C, Guo B, Park CB, Wang G (2017) High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater Des 131:1–11
19.
Zurück zum Zitat Taki K, Kitano D, Ohshima M (2011) Effect of growing crystalline phase on bubble nucleation in poly (L-lactide)/CO2 batch foaming. Ind Eng Chem Res 50:3247–3252 Taki K, Kitano D, Ohshima M (2011) Effect of growing crystalline phase on bubble nucleation in poly (L-lactide)/CO2 batch foaming. Ind Eng Chem Res 50:3247–3252
20.
Zurück zum Zitat Wong A, Guo Y, Park CB (2013) Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—effects of extensional stresses and crystals. J Supercrit Fluids 79:142–151 Wong A, Guo Y, Park CB (2013) Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—effects of extensional stresses and crystals. J Supercrit Fluids 79:142–151
21.
Zurück zum Zitat Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303 Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303
22.
Zurück zum Zitat Wittmann JC, Smith P (1991) Highly oriented thin films of poly (tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352:414–417 Wittmann JC, Smith P (1991) Highly oriented thin films of poly (tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352:414–417
23.
Zurück zum Zitat Yan S, Katzenberg F, Petermann J, Yang D, Shen Y, Straupe C, Wittmann J, Lotz B (2000) A novel epitaxy of isotactic polypropylene (α phase) on PTFE and organic substrates. Polymer 41:2613–2625 Yan S, Katzenberg F, Petermann J, Yang D, Shen Y, Straupe C, Wittmann J, Lotz B (2000) A novel epitaxy of isotactic polypropylene (α phase) on PTFE and organic substrates. Polymer 41:2613–2625
24.
Zurück zum Zitat Frey H, Sheiko S, Möller M, Wittmann JC, Lot B (1993) Highly oriented poly (di-n-alkylsilylene) films on oriented PTFE substrates. Adv Mater 5:917–919 Frey H, Sheiko S, Möller M, Wittmann JC, Lot B (1993) Highly oriented poly (di-n-alkylsilylene) films on oriented PTFE substrates. Adv Mater 5:917–919
25.
Zurück zum Zitat Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology. J Polym Sci Part B Polym Phys 34:47–56 Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology. J Polym Sci Part B Polym Phys 34:47–56
26.
Zurück zum Zitat Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites II effect of transcrystallinity on the interfacial strength. J Polym Sci Part B Polym Phys 34:1435–1442 Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites II effect of transcrystallinity on the interfacial strength. J Polym Sci Part B Polym Phys 34:1435–1442
27.
Zurück zum Zitat Sowinski P, Piorkowska E, Boyer SAE, Haudin JM (2016) Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J 85:564–574 Sowinski P, Piorkowska E, Boyer SAE, Haudin JM (2016) Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J 85:564–574
28.
Zurück zum Zitat Kuang T, Li K, Chen B, Peng X (2017) Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos B Eng 123:112–123 Kuang T, Li K, Chen B, Peng X (2017) Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos B Eng 123:112–123
29.
Zurück zum Zitat Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polym J 98:1–10 Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polym J 98:1–10
30.
Zurück zum Zitat Yuan Q, Awate S, Misra R (2006) Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:1994–2003 Yuan Q, Awate S, Misra R (2006) Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:1994–2003
31.
Zurück zum Zitat Bernland K, Smith P (2009) Nucleating polymer crystallization with poly (tetrafluoroethylene) nanofibrils. J Appl Polym Sci 114:281–287 Bernland K, Smith P (2009) Nucleating polymer crystallization with poly (tetrafluoroethylene) nanofibrils. J Appl Polym Sci 114:281–287
32.
Zurück zum Zitat Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144 Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144
33.
Zurück zum Zitat Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 2:301–324 Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 2:301–324
34.
Zurück zum Zitat Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158 Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158
35.
Zurück zum Zitat Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575 Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575
36.
Zurück zum Zitat Liu T, Mo Z, Zhang H (1998) Nonisothermal crystallization behavior of a novel poly (aryl ether ketone) PEDEKmK. J Appl Polym Sci 67:815–821 Liu T, Mo Z, Zhang H (1998) Nonisothermal crystallization behavior of a novel poly (aryl ether ketone) PEDEKmK. J Appl Polym Sci 67:815–821
37.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112 Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112
38.
Zurück zum Zitat Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224 Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224
39.
Zurück zum Zitat Fereidoon A, Ahangari MG, Saedodin S (2009) A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym Plast Technol Eng 48:579–586 Fereidoon A, Ahangari MG, Saedodin S (2009) A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym Plast Technol Eng 48:579–586
40.
Zurück zum Zitat Wu D, Sun Y, Wu L, Zhang M (2008) Linear viscoelastic properties and crystallization behavior of multi-walled carbon nanotube/polypropylene composites. J Appl Polym Sci 108:1506–1513 Wu D, Sun Y, Wu L, Zhang M (2008) Linear viscoelastic properties and crystallization behavior of multi-walled carbon nanotube/polypropylene composites. J Appl Polym Sci 108:1506–1513
41.
Zurück zum Zitat Huang C-W, Yang T-C, Hung K-C, Xu J-W, Wu J-H (2018) The effect of maleated polypropylene on the non-isothermal crystallization kinetics of wood fiber-reinforced polypropylene composites. Polymers 10:382 Huang C-W, Yang T-C, Hung K-C, Xu J-W, Wu J-H (2018) The effect of maleated polypropylene on the non-isothermal crystallization kinetics of wood fiber-reinforced polypropylene composites. Polymers 10:382
42.
Zurück zum Zitat Li J, Zhou C, Wang G, Tao Y, Liu Q, Li Y (2002) Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polym Test 21:583–589 Li J, Zhou C, Wang G, Tao Y, Liu Q, Li Y (2002) Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polym Test 21:583–589
43.
Zurück zum Zitat Yang ZH, Wu MH, Chen G, Li SJ, Peng PP, Zhang QL (2016) The effect of montmorillonite modification on crystallization behaviour of polypropylene/montmorillonite composites. Polym Polym Compos 24:331–340 Yang ZH, Wu MH, Chen G, Li SJ, Peng PP, Zhang QL (2016) The effect of montmorillonite modification on crystallization behaviour of polypropylene/montmorillonite composites. Polym Polym Compos 24:331–340
44.
Zurück zum Zitat Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221 Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221
45.
Zurück zum Zitat Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II Experimental evidence J Non-Cryst Solids 162:13–25 Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II Experimental evidence J Non-Cryst Solids 162:13–25
46.
Zurück zum Zitat Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. I Theory J Non-Cryst Solids 162:1–12 Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. I Theory J Non-Cryst Solids 162:1–12
47.
Zurück zum Zitat Nofar M, Zhu W, Park C (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353 Nofar M, Zhu W, Park C (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353
48.
Zurück zum Zitat Nofar M, Tabatabaei A, Ameli A, Park CB (2013) Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 54:6471–6478 Nofar M, Tabatabaei A, Ameli A, Park CB (2013) Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 54:6471–6478
49.
Zurück zum Zitat Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures. Polymer 54:2382–2391 Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures. Polymer 54:2382–2391
50.
Zurück zum Zitat Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB (2015) Poly (lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromol 16:3925–3935 Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB (2015) Poly (lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromol 16:3925–3935
51.
Zurück zum Zitat Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782 Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782
52.
Zurück zum Zitat Liu H, Zhang L, Liu F, Guo C, Zhang J (2012) Morphological Distribution in Micro-Injected Polypropylene Parts in the Presence of β-Nucleating Agent. J Macromol Sci, Part B 51:1566–1582 Liu H, Zhang L, Liu F, Guo C, Zhang J (2012) Morphological Distribution in Micro-Injected Polypropylene Parts in the Presence of β-Nucleating Agent. J Macromol Sci, Part B 51:1566–1582
53.
Zurück zum Zitat Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies. Macromolecules 35:9096–9104 Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies. Macromolecules 35:9096–9104
54.
Zurück zum Zitat Somani RH, Yang L, Hsiao BS, Sun T, Pogodina NV, Lustiger A (2005) Shear-induced molecular orientation and crystallization in isotactic polypropylene: effects of the deformation rate and strain. Macromolecules 38:1244–1255 Somani RH, Yang L, Hsiao BS, Sun T, Pogodina NV, Lustiger A (2005) Shear-induced molecular orientation and crystallization in isotactic polypropylene: effects of the deformation rate and strain. Macromolecules 38:1244–1255
Metadaten
Titel
Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites
verfasst von
Yuhui Qiao
Amirjalal Jalali
Jinian Yang
Yuguang Chen
Shiwei Wang
Yongchao Jiang
Jianhua Hou
Jing Jiang
Qian Li
Chul B. Park
Publikationsdatum
26.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05328-5

Weitere Artikel der Ausgabe 4/2021

Journal of Materials Science 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.