Skip to main content
Erschienen in: Journal of Materials Science 7/2023

23.01.2023 | Review

Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications

verfasst von: Hadi Rasuli, Reza Rasuli

Erschienen in: Journal of Materials Science | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene-based nanomaterials have attracted remarkable attention during the last decade in nanotechnology. In this review, we discuss the hybrid nanomaterials based on graphene oxide (GO) and nanoparticles (NPs). We review the synthesis, properties, and applications of immobilized transition metal oxide (TMO) NPs on graphene/GO. We present the TMO NPs immobilizing methods on graphene/GO using physical and chemical methods, including arc discharge, hydrothermal, green chemistry, etc. In addition, we discuss the interaction of the graphene/GO with decorated NPs as metal, n-type, and p-type material and review the physical properties of these materials. In the end, we present promising applications of the graphene/GO-NPs materials for drug delivery, antimicrobial applications, plasmonic and solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mondal A, Jana NR (2014) Graphene-nanoparticle composites and their applications in energy, environmental and biomedical science. Rev Nanosci Nanotechnol 3(3):177–192CrossRef Mondal A, Jana NR (2014) Graphene-nanoparticle composites and their applications in energy, environmental and biomedical science. Rev Nanosci Nanotechnol 3(3):177–192CrossRef
2.
Zurück zum Zitat Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–3884CrossRef Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–3884CrossRef
3.
Zurück zum Zitat Lee XJ et al (2019) Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180CrossRef Lee XJ et al (2019) Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180CrossRef
4.
Zurück zum Zitat Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4(8):3823–3851CrossRef Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4(8):3823–3851CrossRef
5.
Zurück zum Zitat Fei H et al (2014) Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res 7(4):502–510CrossRef Fei H et al (2014) Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res 7(4):502–510CrossRef
6.
Zurück zum Zitat Iijima S, Ajayan P (1992) Smallest carbon nanotube. Nature 358:23–23CrossRef Iijima S, Ajayan P (1992) Smallest carbon nanotube. Nature 358:23–23CrossRef
7.
Zurück zum Zitat Hosseini F, Rasuli R, Jafarian V (2018) Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus. J Phys D Appl 51:145403CrossRef Hosseini F, Rasuli R, Jafarian V (2018) Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus. J Phys D Appl 51:145403CrossRef
8.
Zurück zum Zitat Torkaman M, Rasuli R, Taran L (2020) Photovoltaic and photocatalytic performance of anchored oxygen-deficient TiO2 nanoparticles on graphene oxide. Results in Physics 18:103229CrossRef Torkaman M, Rasuli R, Taran L (2020) Photovoltaic and photocatalytic performance of anchored oxygen-deficient TiO2 nanoparticles on graphene oxide. Results in Physics 18:103229CrossRef
9.
Zurück zum Zitat Wu X et al (2016) Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv 6(95):93119–93124CrossRef Wu X et al (2016) Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv 6(95):93119–93124CrossRef
10.
Zurück zum Zitat Servati M, Rasuli R (2019) Electrochemical performance of decorated reduced graphene oxide by MoO3 nanoparticles as a counter electrode. Mater Res Express 6(9):095519CrossRef Servati M, Rasuli R (2019) Electrochemical performance of decorated reduced graphene oxide by MoO3 nanoparticles as a counter electrode. Mater Res Express 6(9):095519CrossRef
11.
Zurück zum Zitat Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam Relat Mater 50:135–150CrossRef Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam Relat Mater 50:135–150CrossRef
12.
Zurück zum Zitat Jasbi NE et al (2021) Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. J Alloy Compd 861:157956CrossRef Jasbi NE et al (2021) Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. J Alloy Compd 861:157956CrossRef
13.
Zurück zum Zitat Nancy P et al (2021) Fabrication of silver-decorated graphene oxide nanohybrids via pulsed laser ablation with excellent antimicrobial and optical limiting performance. Nanomaterials 11(4):880CrossRef Nancy P et al (2021) Fabrication of silver-decorated graphene oxide nanohybrids via pulsed laser ablation with excellent antimicrobial and optical limiting performance. Nanomaterials 11(4):880CrossRef
14.
Zurück zum Zitat Censabella M et al (2019) Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites. Appl Surf Sci 475:494–503CrossRef Censabella M et al (2019) Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites. Appl Surf Sci 475:494–503CrossRef
15.
Zurück zum Zitat Nancy P et al (2019) In situ decoration of gold nanoparticles on graphene oxide via nanosecond laser ablation for remarkable chemical sensing and catalysis. Nanomaterials (Basel) 9(9):1201CrossRef Nancy P et al (2019) In situ decoration of gold nanoparticles on graphene oxide via nanosecond laser ablation for remarkable chemical sensing and catalysis. Nanomaterials (Basel) 9(9):1201CrossRef
16.
Zurück zum Zitat Wang Y et al (2015) Electronic transport properties of Ir-decorated graphene. Sci Rep 5(1):15764CrossRef Wang Y et al (2015) Electronic transport properties of Ir-decorated graphene. Sci Rep 5(1):15764CrossRef
17.
Zurück zum Zitat Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
18.
Zurück zum Zitat Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):1–7CrossRef Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):1–7CrossRef
19.
Zurück zum Zitat Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625–19628CrossRef Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625–19628CrossRef
20.
Zurück zum Zitat Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef
21.
Zurück zum Zitat Leon V et al (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8(1):563–571CrossRef Leon V et al (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8(1):563–571CrossRef
22.
Zurück zum Zitat Knieke C et al (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204CrossRef Knieke C et al (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204CrossRef
23.
Zurück zum Zitat Cheng C et al (2019) Tandem chemical modification/mechanical exfoliation of graphite: scalable synthesis of high-quality, surface-functionalized graphene. Carbon 145:668–676CrossRef Cheng C et al (2019) Tandem chemical modification/mechanical exfoliation of graphite: scalable synthesis of high-quality, surface-functionalized graphene. Carbon 145:668–676CrossRef
24.
Zurück zum Zitat Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef
25.
Zurück zum Zitat Hernandez Y et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef Hernandez Y et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213CrossRef
26.
Zurück zum Zitat Tian J et al (2019) The liquid-phase preparation of graphene by shear exfoliation with graphite oxide as a dispersant. Mater Chem Phys 223:1–8CrossRef Tian J et al (2019) The liquid-phase preparation of graphene by shear exfoliation with graphite oxide as a dispersant. Mater Chem Phys 223:1–8CrossRef
27.
Zurück zum Zitat Karagiannidis PG et al (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3):2742–2755CrossRef Karagiannidis PG et al (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3):2742–2755CrossRef
28.
Zurück zum Zitat Li Z et al (2020) Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14(9):10976–10985CrossRef Li Z et al (2020) Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14(9):10976–10985CrossRef
29.
Zurück zum Zitat Baig Z et al (2018) Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrason Sonochem 45:133–149CrossRef Baig Z et al (2018) Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrason Sonochem 45:133–149CrossRef
30.
Zurück zum Zitat Liu C et al (2019) Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2- decorated graphene nanosheets by liquid-phase exfoliation. J Alloy Compd 810:151881CrossRef Liu C et al (2019) Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2- decorated graphene nanosheets by liquid-phase exfoliation. J Alloy Compd 810:151881CrossRef
31.
Zurück zum Zitat Paek S-M, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75CrossRef Paek S-M, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75CrossRef
32.
Zurück zum Zitat Kim H et al (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49(12):2146–2149CrossRef Kim H et al (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49(12):2146–2149CrossRef
33.
Zurück zum Zitat Chen X et al (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6(9):7948–7955CrossRef Chen X et al (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6(9):7948–7955CrossRef
34.
Zurück zum Zitat Li X et al (2012) Batteries: tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater 22(8):1646–1646CrossRef Li X et al (2012) Batteries: tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater 22(8):1646–1646CrossRef
35.
Zurück zum Zitat Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRef
36.
Zurück zum Zitat Boukhalfa S, Evanoff K, Yushin G (2012) Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environmental Science 5(5):6872–6879CrossRef Boukhalfa S, Evanoff K, Yushin G (2012) Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environmental Science 5(5):6872–6879CrossRef
37.
Zurück zum Zitat Sun X et al (2014) Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J Mater Chem A 2(20):7319–7326CrossRef Sun X et al (2014) Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J Mater Chem A 2(20):7319–7326CrossRef
38.
Zurück zum Zitat Du J et al (2011) Hierarchically ordered macro− mesoporous TiO2− graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5(1):590–596CrossRef Du J et al (2011) Hierarchically ordered macro− mesoporous TiO2− graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5(1):590–596CrossRef
39.
Zurück zum Zitat Li B et al (2010) All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv Mater 22(28):3058–3061CrossRef Li B et al (2010) All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv Mater 22(28):3058–3061CrossRef
40.
Zurück zum Zitat Zhou G et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313CrossRef Zhou G et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313CrossRef
41.
Zurück zum Zitat Tang Y-B et al (2010) Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4(6):3482–3488CrossRef Tang Y-B et al (2010) Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4(6):3482–3488CrossRef
42.
Zurück zum Zitat Chen P et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2(2):249–256CrossRef Chen P et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2(2):249–256CrossRef
43.
Zurück zum Zitat Wang T et al (2014) Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. J Mater Chem A 2(22):8352–8361CrossRef Wang T et al (2014) Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. J Mater Chem A 2(22):8352–8361CrossRef
44.
Zurück zum Zitat Tu W et al (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-Graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into Methane and Ethane. Adv Funct Mater 23(14):1743–1749CrossRef Tu W et al (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-Graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into Methane and Ethane. Adv Funct Mater 23(14):1743–1749CrossRef
45.
Zurück zum Zitat Liu J et al (2016) Photocatalytic reduction of CO2 using TiO2-graphene nanocomposites. J Nanomater 2016(1):1 Liu J et al (2016) Photocatalytic reduction of CO2 using TiO2-graphene nanocomposites. J Nanomater 2016(1):1
46.
Zurück zum Zitat Li C et al (2017) Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res 117:49–57CrossRef Li C et al (2017) Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res 117:49–57CrossRef
47.
Zurück zum Zitat Borthakur P, Das MR (2018) Hydrothermal assisted decoration of NiS2 and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: effect of background electrolyte and surface charge. J Colloid Interface Sci 516:342–354CrossRef Borthakur P, Das MR (2018) Hydrothermal assisted decoration of NiS2 and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: effect of background electrolyte and surface charge. J Colloid Interface Sci 516:342–354CrossRef
48.
Zurück zum Zitat Zhang J et al (2020) One-step synthesis of SiOx@Graphene composite material by a hydrothermal method for lithium-ion battery anodes. Energy Fuels 34(3):3895–3900CrossRef Zhang J et al (2020) One-step synthesis of SiOx@Graphene composite material by a hydrothermal method for lithium-ion battery anodes. Energy Fuels 34(3):3895–3900CrossRef
49.
Zurück zum Zitat Das TK et al (2018) A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces 13:79–91CrossRef Das TK et al (2018) A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces 13:79–91CrossRef
50.
Zurück zum Zitat Salazar P et al (2019) One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. J Electroanal Chem 855:113638CrossRef Salazar P et al (2019) One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. J Electroanal Chem 855:113638CrossRef
51.
Zurück zum Zitat Sadhukhan S et al (2019) Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties. Mater Sci Eng, C 99:696–709CrossRef Sadhukhan S et al (2019) Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties. Mater Sci Eng, C 99:696–709CrossRef
52.
Zurück zum Zitat Dreyer DR et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRef Dreyer DR et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRef
53.
Zurück zum Zitat Ohta T et al (2006) Controlling the electronic structure of bilayer graphene. Science 313(5789):951–954CrossRef Ohta T et al (2006) Controlling the electronic structure of bilayer graphene. Science 313(5789):951–954CrossRef
54.
Zurück zum Zitat Yang Y et al (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater 6(9):6351–6360CrossRef Yang Y et al (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater 6(9):6351–6360CrossRef
55.
Zurück zum Zitat Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem A 21(10):3335–3345CrossRef Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem A 21(10):3335–3345CrossRef
56.
Zurück zum Zitat Parvez K et al (2012) Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 6(11):9541–9550CrossRef Parvez K et al (2012) Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 6(11):9541–9550CrossRef
57.
Zurück zum Zitat Yang Z et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211CrossRef Yang Z et al (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211CrossRef
58.
Zurück zum Zitat Liu ZW et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50(14):3257–3261CrossRef Liu ZW et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50(14):3257–3261CrossRef
59.
Zurück zum Zitat Tang J et al (2019) Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152:575–586CrossRef Tang J et al (2019) Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152:575–586CrossRef
60.
Zurück zum Zitat Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248–2255CrossRef Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248–2255CrossRef
61.
Zurück zum Zitat Chen P et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Mater 2(2):249–256 Chen P et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Mater 2(2):249–256
62.
Zurück zum Zitat Faisal SN et al (2021) 3D copper-confined N-doped graphene/carbon nanotubes network as high-performing lithium-ion battery anode. J Alloys Compounds 850:156701CrossRef Faisal SN et al (2021) 3D copper-confined N-doped graphene/carbon nanotubes network as high-performing lithium-ion battery anode. J Alloys Compounds 850:156701CrossRef
63.
Zurück zum Zitat You B et al (2013) Three dimensional N-doped graphene–CNT networks for supercapacitor. Chem Commun 49(44):5016–5018CrossRef You B et al (2013) Three dimensional N-doped graphene–CNT networks for supercapacitor. Chem Commun 49(44):5016–5018CrossRef
64.
Zurück zum Zitat Giovannetti G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101(2):026803CrossRef Giovannetti G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101(2):026803CrossRef
65.
Zurück zum Zitat Ullah S et al (2021) Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: advancing the substitutionally doped graphene family. Nano Res 15(2):1310–1318CrossRef Ullah S et al (2021) Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: advancing the substitutionally doped graphene family. Nano Res 15(2):1310–1318CrossRef
66.
Zurück zum Zitat Bleu Y et al (2020) Boron-doped graphene synthesis by pulsed laser co-deposition of carbon and boron. Appl Surf Sci 513:145843CrossRef Bleu Y et al (2020) Boron-doped graphene synthesis by pulsed laser co-deposition of carbon and boron. Appl Surf Sci 513:145843CrossRef
67.
Zurück zum Zitat Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9(8):1316–1320CrossRef Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9(8):1316–1320CrossRef
68.
Zurück zum Zitat Joucken F et al (2012) Localized state and charge transfer in nitrogen-doped graphene. Phys Rev B 85(16):161408CrossRef Joucken F et al (2012) Localized state and charge transfer in nitrogen-doped graphene. Phys Rev B 85(16):161408CrossRef
69.
Zurück zum Zitat Giangregorio M et al (2015) Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids. Nanoscale 7(30):12868–12877CrossRef Giangregorio M et al (2015) Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids. Nanoscale 7(30):12868–12877CrossRef
70.
Zurück zum Zitat Garg R, Dutta NK, Choudhury NR (2014) Work function engineering of graphene. Nanomaterials 4(2):267–300CrossRef Garg R, Dutta NK, Choudhury NR (2014) Work function engineering of graphene. Nanomaterials 4(2):267–300CrossRef
71.
Zurück zum Zitat Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J Am Chem Soc 131(40):14466–14472CrossRef Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J Am Chem Soc 131(40):14466–14472CrossRef
72.
Zurück zum Zitat Le Ru EC et al (2007) Surface enhanced raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRef Le Ru EC et al (2007) Surface enhanced raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRef
73.
Zurück zum Zitat Xiang J, Drzal LT (2011) Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper. ACS Appl Mater Interfaces 3(4):1325–1332CrossRef Xiang J, Drzal LT (2011) Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper. ACS Appl Mater Interfaces 3(4):1325–1332CrossRef
74.
Zurück zum Zitat Song X, Wang D, Kim M (2021) Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin. Food Chem 342:128257CrossRef Song X, Wang D, Kim M (2021) Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin. Food Chem 342:128257CrossRef
75.
Zurück zum Zitat Tan YW et al (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99(24):246803CrossRef Tan YW et al (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99(24):246803CrossRef
76.
Zurück zum Zitat Du X et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRef Du X et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRef
77.
Zurück zum Zitat Wang D et al (2010) Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir. Nano Lett 10(12):4989–4993CrossRef Wang D et al (2010) Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir. Nano Lett 10(12):4989–4993CrossRef
78.
Zurück zum Zitat Ohta T et al (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys Rev Lett 98(20):206802CrossRef Ohta T et al (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys Rev Lett 98(20):206802CrossRef
79.
Zurück zum Zitat Zhong B et al (2016) Temperature dependent carrier mobility in graphene: effect of Pd nanoparticle functionalization and hydrogenation. Appl Phys Lett 108(9):093102CrossRef Zhong B et al (2016) Temperature dependent carrier mobility in graphene: effect of Pd nanoparticle functionalization and hydrogenation. Appl Phys Lett 108(9):093102CrossRef
80.
Zurück zum Zitat Soltan MS et al (2021) Copper nanoparticle-decorated RGO electrodes as hole transport layer of perovskite solar cells enhancing efficiency and shelf stability. J Market Res 14:631–638 Soltan MS et al (2021) Copper nanoparticle-decorated RGO electrodes as hole transport layer of perovskite solar cells enhancing efficiency and shelf stability. J Market Res 14:631–638
81.
Zurück zum Zitat Pradhan P et al (2015) Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites. Opt Mater 39:182–187CrossRef Pradhan P et al (2015) Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites. Opt Mater 39:182–187CrossRef
82.
Zurück zum Zitat Yadav RK et al (2018) Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Phys Rev Appl 9(4):044043CrossRef Yadav RK et al (2018) Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Phys Rev Appl 9(4):044043CrossRef
83.
Zurück zum Zitat Solati E, Dorranian D (2016) Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl Phys B 122(4):76CrossRef Solati E, Dorranian D (2016) Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl Phys B 122(4):76CrossRef
84.
Zurück zum Zitat Omidvar A, RashidianVaziri MR, Jaleh B (2018) Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles. Physica E 103:239–245CrossRef Omidvar A, RashidianVaziri MR, Jaleh B (2018) Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles. Physica E 103:239–245CrossRef
85.
Zurück zum Zitat Esmaeilzadeh M, Sadjadi S, Salehi Z (2020) Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. Int J Biol Macromol 150:441–448CrossRef Esmaeilzadeh M, Sadjadi S, Salehi Z (2020) Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. Int J Biol Macromol 150:441–448CrossRef
86.
Zurück zum Zitat Mohammadi Nodeh MK et al (2018) Enhanced removal of naproxen from wastewater using silica magnetic nanoparticles decorated onto graphene oxide; parametric and equilibrium study. Sep Sci Technol 53(15):2476–2485CrossRef Mohammadi Nodeh MK et al (2018) Enhanced removal of naproxen from wastewater using silica magnetic nanoparticles decorated onto graphene oxide; parametric and equilibrium study. Sep Sci Technol 53(15):2476–2485CrossRef
87.
Zurück zum Zitat Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361CrossRef Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361CrossRef
88.
Zurück zum Zitat Shen J et al (2010) One step synthesis of graphene oxide−magnetic nanoparticle composite. J Phys Chem C 114(3):1498–1503CrossRef Shen J et al (2010) One step synthesis of graphene oxide−magnetic nanoparticle composite. J Phys Chem C 114(3):1498–1503CrossRef
89.
Zurück zum Zitat Kilanski L et al (2021) Magnetic interactions in graphene decorated with iron oxide nanoparticles. Nanotechnology 32(30):305703CrossRef Kilanski L et al (2021) Magnetic interactions in graphene decorated with iron oxide nanoparticles. Nanotechnology 32(30):305703CrossRef
90.
Zurück zum Zitat Baghayeri M et al (2019) A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl Surf Sci 478:87–93CrossRef Baghayeri M et al (2019) A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl Surf Sci 478:87–93CrossRef
91.
Zurück zum Zitat Luo T, Lloyd JR (2010) Non-equilibrium molecular dynamics study of thermal energy transport in Au–SAM–Au junctions. Int J Heat Mass Trans 53(1–3):1–11CrossRef Luo T, Lloyd JR (2010) Non-equilibrium molecular dynamics study of thermal energy transport in Au–SAM–Au junctions. Int J Heat Mass Trans 53(1–3):1–11CrossRef
92.
Zurück zum Zitat Zedan AF et al (2013) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7(1):627–636CrossRef Zedan AF et al (2013) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7(1):627–636CrossRef
93.
Zurück zum Zitat More MP, Deshmukh PK (2020) Development of amine-functionalized superparamagnetic iron oxide nanoparticles anchored graphene nanosheets as a possible theranostic agent in cancer metastasis. Drug Deliv Transl Res 10(4):862–877CrossRef More MP, Deshmukh PK (2020) Development of amine-functionalized superparamagnetic iron oxide nanoparticles anchored graphene nanosheets as a possible theranostic agent in cancer metastasis. Drug Deliv Transl Res 10(4):862–877CrossRef
94.
Zurück zum Zitat Murugesan B et al (2020) Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl Surf Sci 510:145403CrossRef Murugesan B et al (2020) Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl Surf Sci 510:145403CrossRef
95.
Zurück zum Zitat Song M-M et al (2017) Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Mater Sci Eng, C 77:904–911CrossRef Song M-M et al (2017) Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Mater Sci Eng, C 77:904–911CrossRef
96.
Zurück zum Zitat Liu J et al (2018) Redox-responsive hyaluronic acid-functionalized graphene oxide nanosheets for targeted delivery of water-insoluble cancer drugs. Int J Nanomed 13:7457–7472CrossRef Liu J et al (2018) Redox-responsive hyaluronic acid-functionalized graphene oxide nanosheets for targeted delivery of water-insoluble cancer drugs. Int J Nanomed 13:7457–7472CrossRef
97.
Zurück zum Zitat Chung C et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRef Chung C et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRef
98.
Zurück zum Zitat Singh DP et al (2018) Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng, C 86:173–197CrossRef Singh DP et al (2018) Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng, C 86:173–197CrossRef
99.
Zurück zum Zitat Yi J et al (2020) Graphene oxide-incorporated hydrogels for biomedical applications. Polym J 52(8):823–837CrossRef Yi J et al (2020) Graphene oxide-incorporated hydrogels for biomedical applications. Polym J 52(8):823–837CrossRef
100.
Zurück zum Zitat Dudek I et al (2016) The molecular influence of graphene and graphene oxide on the immune system under in vitro and in vivo conditions. Arch Immunol Ther Exp 64(3):195–215CrossRef Dudek I et al (2016) The molecular influence of graphene and graphene oxide on the immune system under in vitro and in vivo conditions. Arch Immunol Ther Exp 64(3):195–215CrossRef
101.
Zurück zum Zitat Liu XL, Fan HM (2014) Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Curr Opin Chem Eng 4:38–46CrossRef Liu XL, Fan HM (2014) Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Curr Opin Chem Eng 4:38–46CrossRef
102.
Zurück zum Zitat Qian Z, Hu W, Pan Y (2019) Biofunctional magnetic nanomaterials for diagnosis, therapy, and theranostic applications. Theranostic Bionanomaterials. Elsevier, pp 341–356CrossRef Qian Z, Hu W, Pan Y (2019) Biofunctional magnetic nanomaterials for diagnosis, therapy, and theranostic applications. Theranostic Bionanomaterials. Elsevier, pp 341–356CrossRef
103.
Zurück zum Zitat Sasikala ARK et al (2016) Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci Rep 6(1):1–14 Sasikala ARK et al (2016) Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci Rep 6(1):1–14
104.
Zurück zum Zitat Hsu Y-H et al (2017) Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. J Nanopart Res 19(11):1–19CrossRef Hsu Y-H et al (2017) Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. J Nanopart Res 19(11):1–19CrossRef
105.
Zurück zum Zitat Zhang L-N et al (2014) In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86(5):2711–2718CrossRef Zhang L-N et al (2014) In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86(5):2711–2718CrossRef
106.
Zurück zum Zitat Kannan K et al (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid 281:102178CrossRef Kannan K et al (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid 281:102178CrossRef
107.
Zurück zum Zitat Murthy S, Effiong P, Fei CC (2020) Metal oxide nanoparticles in biomedical applications. Metal Oxide Powder Technologies. Elsevier, pp 233–251CrossRef Murthy S, Effiong P, Fei CC (2020) Metal oxide nanoparticles in biomedical applications. Metal Oxide Powder Technologies. Elsevier, pp 233–251CrossRef
108.
Zurück zum Zitat Weldegebrieal GK (2020) Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg Chem Commun 120:108140CrossRef Weldegebrieal GK (2020) Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg Chem Commun 120:108140CrossRef
109.
Zurück zum Zitat Yao Y et al (2019) Facile synthesis, microstructure, photo-catalytic activity, and anti-bacterial property of the novel Ag@ gelatin–silica hybrid nanofiber membranes. J Sol-Gel Sci 89(3):651–662CrossRef Yao Y et al (2019) Facile synthesis, microstructure, photo-catalytic activity, and anti-bacterial property of the novel Ag@ gelatin–silica hybrid nanofiber membranes. J Sol-Gel Sci 89(3):651–662CrossRef
110.
Zurück zum Zitat Wei A et al (2018) Decoration of Ag nanoparticles on the apatite nanosheet-coated silica nanofibers with enhanced anti-bacterial property and photo-catalytic activity. Mater Lett 230:236–240CrossRef Wei A et al (2018) Decoration of Ag nanoparticles on the apatite nanosheet-coated silica nanofibers with enhanced anti-bacterial property and photo-catalytic activity. Mater Lett 230:236–240CrossRef
111.
Zurück zum Zitat Khan ZUH et al (2017) Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J Alloys Compounds 725:869–876CrossRef Khan ZUH et al (2017) Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J Alloys Compounds 725:869–876CrossRef
112.
Zurück zum Zitat Nair MG et al (2011) Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater Lett 65(12):1797–1800CrossRef Nair MG et al (2011) Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater Lett 65(12):1797–1800CrossRef
113.
Zurück zum Zitat Kao C-Y et al (2011) Thermal diffusion of Co into sputtered ZnO: Co thin film for enhancing visible-light-induced photo-catalytic activity. Appl Surf Sci 258(5):1813–1818CrossRef Kao C-Y et al (2011) Thermal diffusion of Co into sputtered ZnO: Co thin film for enhancing visible-light-induced photo-catalytic activity. Appl Surf Sci 258(5):1813–1818CrossRef
114.
Zurück zum Zitat Moqbel RA et al (2018) Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity. Materials Research Express 5(3):035050CrossRef Moqbel RA et al (2018) Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity. Materials Research Express 5(3):035050CrossRef
115.
Zurück zum Zitat Nasir M et al (2016) Study of synergistic effect of Sc and C co-doping on the enhancement of visible light photo-catalytic activity of TiO2. Appl Surf Sci 364:446–454CrossRef Nasir M et al (2016) Study of synergistic effect of Sc and C co-doping on the enhancement of visible light photo-catalytic activity of TiO2. Appl Surf Sci 364:446–454CrossRef
116.
Zurück zum Zitat Haldorai Y et al (2014) Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Mater Chem Phys 143(3):1452–1461CrossRef Haldorai Y et al (2014) Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Mater Chem Phys 143(3):1452–1461CrossRef
117.
Zurück zum Zitat Sahoo M et al (2019) A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catal Sci Technol 9(17):4678–4692CrossRef Sahoo M et al (2019) A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catal Sci Technol 9(17):4678–4692CrossRef
118.
Zurück zum Zitat Barghouti M, Akjouj A, Mir A (2020) Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum 180:109497CrossRef Barghouti M, Akjouj A, Mir A (2020) Design of silver nanoparticles with graphene coatings layers used for LSPR biosensor applications. Vacuum 180:109497CrossRef
119.
Zurück zum Zitat Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRef Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRef
120.
Zurück zum Zitat Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors 4(4):472–493CrossRef Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry—a review. Biosensors 4(4):472–493CrossRef
121.
Zurück zum Zitat Lin T-W et al (2015) Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites. Phys Chem Chem Phys 17(28):18443–18448CrossRef Lin T-W et al (2015) Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites. Phys Chem Chem Phys 17(28):18443–18448CrossRef
122.
Zurück zum Zitat Huang Q et al (2013) Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond. ACS Catal 3(7):1477–1485CrossRef Huang Q et al (2013) Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond. ACS Catal 3(7):1477–1485CrossRef
123.
Zurück zum Zitat Gu L et al (2013) One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater 5(8):3085–3093CrossRef Gu L et al (2013) One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater 5(8):3085–3093CrossRef
124.
Zurück zum Zitat Adineh E, Rasuli R (2015) Facile synthesis of decorated graphene oxide sheets with WO 3 nanoparticles. Appl Phys A 120(4):1587–1592CrossRef Adineh E, Rasuli R (2015) Facile synthesis of decorated graphene oxide sheets with WO 3 nanoparticles. Appl Phys A 120(4):1587–1592CrossRef
125.
Zurück zum Zitat Lim SP et al (2015) Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int J Energy Res 39(6):812–824CrossRef Lim SP et al (2015) Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int J Energy Res 39(6):812–824CrossRef
126.
Zurück zum Zitat Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRef Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRef
127.
Zurück zum Zitat Perera SD et al (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956CrossRef Perera SD et al (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956CrossRef
128.
Zurück zum Zitat Nazila Z, Rasuli R (2018) Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl Phys A 124(12):814CrossRef Nazila Z, Rasuli R (2018) Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl Phys A 124(12):814CrossRef
129.
Zurück zum Zitat Tu W et al (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Func Mater 23(14):1743–1749CrossRef Tu W et al (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Func Mater 23(14):1743–1749CrossRef
130.
Zurück zum Zitat Wongkrua P, Thongtem T, Thongtem S (2013) Synthesis of h-and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization. J Nanomater 2013(79):79 Wongkrua P, Thongtem T, Thongtem S (2013) Synthesis of h-and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization. J Nanomater 2013(79):79
131.
Zurück zum Zitat Nadimicherla R et al (2014) Electrochemical performance of new α-MoO3 nanobelt cathode materials for rechargeable Li-ion batteries. Solid State Sci 34:43–48CrossRef Nadimicherla R et al (2014) Electrochemical performance of new α-MoO3 nanobelt cathode materials for rechargeable Li-ion batteries. Solid State Sci 34:43–48CrossRef
132.
Zurück zum Zitat Datta R et al (2017) Highly active two dimensional α-MoO 3–x for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 5(46):24223–24231CrossRef Datta R et al (2017) Highly active two dimensional α-MoO 3–x for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 5(46):24223–24231CrossRef
133.
Zurück zum Zitat Chernova NA et al (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem A 19(17):2526–2552CrossRef Chernova NA et al (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem A 19(17):2526–2552CrossRef
134.
Zurück zum Zitat Luo Z et al (2016) Mesoporous MoO3–x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv Energy Mater 6(16):1600528CrossRef Luo Z et al (2016) Mesoporous MoO3–x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv Energy Mater 6(16):1600528CrossRef
135.
Zurück zum Zitat Li L et al (2017) P doped MoO3− x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 13(25):1700441CrossRef Li L et al (2017) P doped MoO3− x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 13(25):1700441CrossRef
136.
Zurück zum Zitat Zhao Y, Wang L, Byon HR (2013) High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat Commun 4(1):1–7CrossRef Zhao Y, Wang L, Byon HR (2013) High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat Commun 4(1):1–7CrossRef
137.
Zurück zum Zitat White RT, Thibau ES, Lu Z-H (2016) Interface structure of MoO 3 on organic semiconductors. Sci Rep 6(1):1–9CrossRef White RT, Thibau ES, Lu Z-H (2016) Interface structure of MoO 3 on organic semiconductors. Sci Rep 6(1):1–9CrossRef
138.
Zurück zum Zitat Meyer J et al (2014) Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci Rep 4(1):1–7CrossRef Meyer J et al (2014) Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci Rep 4(1):1–7CrossRef
139.
Zurück zum Zitat Zheng Q et al (2018) Solution-processed composite interfacial layer of MoOx-doped graphene oxide for robust hole injection in organic light-emitting diode. Phys Status Solidi 12(4):1700434 Zheng Q et al (2018) Solution-processed composite interfacial layer of MoOx-doped graphene oxide for robust hole injection in organic light-emitting diode. Phys Status Solidi 12(4):1700434
Metadaten
Titel
Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications
verfasst von
Hadi Rasuli
Reza Rasuli
Publikationsdatum
23.01.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08183-2

Weitere Artikel der Ausgabe 7/2023

Journal of Materials Science 7/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.