Skip to main content
Erschienen in: Journal of Materials Science 19/2023

09.05.2023 | Composites & nanocomposites

Comparison of mechanical properties of 2024Al composites strengthened with the carbon fibers and/or ZrC particles

verfasst von: Xuan Zhou, Yimin Gao, Yiran Wang, Peng Xiao

Erschienen in: Journal of Materials Science | Ausgabe 19/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the ZrC particles and/or Ni-coated carbon fibers-reinforced 2024Al matrix composites are prepared by spark plasm sintering and solution aging treatment, which are denoted as Cf(Ni)–ZrC/2024Al, ZrC/2024Al, and Cf(Ni)/2024Al composites. It takes 12 h for 2024Al alloy, 10 h for ZrC/2024Al and Cf(Ni)/2024Al, and 8 h for Cf(Ni)–ZrC/2024Al to reach the peak-aged condition. The increased number of interfaces and the growing dislocations account for the accelerated aging behavior. Among all prepared samples, the Cf(Ni)–ZrC/2024Al demonstrates the highest hardness of 139.4 HV, which is 17.8% higher than the 2024Al. The tensile experiments indicate the Cf(Ni)–ZrC/2024Al displays the highest yield strength of 350.5 MPa, tensile strength of 536.4 MPa, and strain of 14.8%, which has 56.7%, 45.8%, 52.6% increasements, respectively, over those of 2024Al. The results illustrate that dual reinforcement demonstrates a better strengthening and toughening effect than the monolithic reinforcement. The improvement of strength and strain of Cf(Ni)–ZrC/2024Al is contributed to the load transfer effect, dislocation strengthening, grain refinement, and Orowan strengthening.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, CambridgeCrossRef Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Chawla N, Chawla KK (2006) Applications. metal matrix composites, 2nd edn. Springer, New York, pp 325–352CrossRef Chawla N, Chawla KK (2006) Applications. metal matrix composites, 2nd edn. Springer, New York, pp 325–352CrossRef
3.
Zurück zum Zitat Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540CrossRef Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540CrossRef
4.
Zurück zum Zitat Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Technol 8:4924–4939CrossRef Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Technol 8:4924–4939CrossRef
5.
Zurück zum Zitat Binner J, Chang H, Higginson R (2009) Processing of ceramic-metal interpenetrating composites. J Eur Ceram Soc 29:837–842CrossRef Binner J, Chang H, Higginson R (2009) Processing of ceramic-metal interpenetrating composites. J Eur Ceram Soc 29:837–842CrossRef
6.
Zurück zum Zitat Ibrahim IA, Lavernia EJ (1991) Particulate reinforced metal matrix composites -a review. J Mater Sci 26:1137–1156CrossRef Ibrahim IA, Lavernia EJ (1991) Particulate reinforced metal matrix composites -a review. J Mater Sci 26:1137–1156CrossRef
7.
Zurück zum Zitat Hayrettin A, Tolga K, Ercan C, Huseyin Ç (2006) Wear behaviour of Al/(Al2O3p +SiCp) hybrid composites. Tribol Int 39:213–220CrossRef Hayrettin A, Tolga K, Ercan C, Huseyin Ç (2006) Wear behaviour of Al/(Al2O3p +SiCp) hybrid composites. Tribol Int 39:213–220CrossRef
8.
Zurück zum Zitat Cui Y, Jin T, Cao L, Liu F (2016) Aging behavior of high volume fraction SiCp/Al composites fabricated by pressureless infiltration. J Alloy Compd 681:233–239CrossRef Cui Y, Jin T, Cao L, Liu F (2016) Aging behavior of high volume fraction SiCp/Al composites fabricated by pressureless infiltration. J Alloy Compd 681:233–239CrossRef
9.
Zurück zum Zitat Guo X, Guo Q, Nie J, Liu Z, Li Z, Fan G, Xiong DB, Su Y, Fan J, Zhang D (2018) Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites. Mater Sci Eng A 711:643–649CrossRef Guo X, Guo Q, Nie J, Liu Z, Li Z, Fan G, Xiong DB, Su Y, Fan J, Zhang D (2018) Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites. Mater Sci Eng A 711:643–649CrossRef
10.
Zurück zum Zitat Nemati N, Khosroshahi R, Emamy M, Zolriasatein A (2011) Investigation of microstructure, hardness and wear properties of Al-4.5wt.%Cu-TiC nanocomposites produced by mechanical milling. Mater Des 32(2):3718–3729CrossRef Nemati N, Khosroshahi R, Emamy M, Zolriasatein A (2011) Investigation of microstructure, hardness and wear properties of Al-4.5wt.%Cu-TiC nanocomposites produced by mechanical milling. Mater Des 32(2):3718–3729CrossRef
11.
Zurück zum Zitat Du R, Gao Q, Wu S, Lü S, Zhou X (2018) Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater Sci Eng A 721:244–250CrossRef Du R, Gao Q, Wu S, Lü S, Zhou X (2018) Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater Sci Eng A 721:244–250CrossRef
12.
Zurück zum Zitat Ma Y, Geng J, Chen Z, Wang M, Chen D, Ji G, Ji V, Wang H (2019) Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite. Eng Fract Mech 207:23–35CrossRef Ma Y, Geng J, Chen Z, Wang M, Chen D, Ji G, Ji V, Wang H (2019) Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite. Eng Fract Mech 207:23–35CrossRef
13.
Zurück zum Zitat Kai W, Yang JM (1989) Mechanical behavior of B4C particulate reinforced 7091 aluminum composite. Scr Mater 23:1277–1280 Kai W, Yang JM (1989) Mechanical behavior of B4C particulate reinforced 7091 aluminum composite. Scr Mater 23:1277–1280
14.
Zurück zum Zitat Ceschini L, Minak G, Morri A (2006) Tensile and fatigue properties of the AA6061/20vol% Al2O3p and AA7005/10vol% Al2O3p composites. Compos Sci Technol 66:333–342CrossRef Ceschini L, Minak G, Morri A (2006) Tensile and fatigue properties of the AA6061/20vol% Al2O3p and AA7005/10vol% Al2O3p composites. Compos Sci Technol 66:333–342CrossRef
15.
Zurück zum Zitat Khajuria A, Akhtar M, Pandey MK, Singh MP, Raina A, Bedi R, Singh B (2019) Influence of ceramic Al2O3 particulates on performance measures and surface characteristics during sinker EDM of stir cast AMMCs. World J Eng 16(4):526–538CrossRef Khajuria A, Akhtar M, Pandey MK, Singh MP, Raina A, Bedi R, Singh B (2019) Influence of ceramic Al2O3 particulates on performance measures and surface characteristics during sinker EDM of stir cast AMMCs. World J Eng 16(4):526–538CrossRef
16.
Zurück zum Zitat Khajuria A, Bedi R, Singh B, Akhtar M (2018) EDM machinability and parametric optimisation of 2014Al/Al2O3 composite by RSM. Int J Mach Mach Mater 20:536–555 Khajuria A, Bedi R, Singh B, Akhtar M (2018) EDM machinability and parametric optimisation of 2014Al/Al2O3 composite by RSM. Int J Mach Mach Mater 20:536–555
17.
Zurück zum Zitat Zhang ZY, Chen G, Zhang SL, Zhao YT, Yang R, Liu MP (2019) Enhanced strength and ductility in ZrB2/2024Al nanocomposite with a quasi-network architecture. J Alloy Compd 778:833–838CrossRef Zhang ZY, Chen G, Zhang SL, Zhao YT, Yang R, Liu MP (2019) Enhanced strength and ductility in ZrB2/2024Al nanocomposite with a quasi-network architecture. J Alloy Compd 778:833–838CrossRef
18.
Zurück zum Zitat Yang R, Zhang ZY, Zhao YT (2016) Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction. Mater Char 112:51–59CrossRef Yang R, Zhang ZY, Zhao YT (2016) Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction. Mater Char 112:51–59CrossRef
19.
Zurück zum Zitat Stein J, Lenczowski B, Fréty N, Anglaret E (2012) Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon 50:2264–2272CrossRef Stein J, Lenczowski B, Fréty N, Anglaret E (2012) Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon 50:2264–2272CrossRef
20.
Zurück zum Zitat Liao JZ, Tan MJ, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRef Liao JZ, Tan MJ, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRef
21.
Zurück zum Zitat Xin L, Yang W, Zhao Q, Dong R, Wu P, Xiu Z, Hussain M, Wu GH (2017) Strengthening behavior in SiC nanowires reinforced pure Al composite. J Alloy Compd 695:2406–2412CrossRef Xin L, Yang W, Zhao Q, Dong R, Wu P, Xiu Z, Hussain M, Wu GH (2017) Strengthening behavior in SiC nanowires reinforced pure Al composite. J Alloy Compd 695:2406–2412CrossRef
22.
Zurück zum Zitat Yang QR, Liu JX, Li SK, Wang FC, Wu TT (2014) Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite. Mater Des 57:442–448CrossRef Yang QR, Liu JX, Li SK, Wang FC, Wu TT (2014) Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite. Mater Des 57:442–448CrossRef
23.
Zurück zum Zitat Liu ZG, Mang XB, Chai LH, Chen YY (2010) Interface study of carbon fibre reinforced Al-Cu composites. J Alloy Compd 504S:S512–S514CrossRef Liu ZG, Mang XB, Chai LH, Chen YY (2010) Interface study of carbon fibre reinforced Al-Cu composites. J Alloy Compd 504S:S512–S514CrossRef
24.
Zurück zum Zitat Qian MF, Zhang XX, Li JC, Gao X, Geng L (2019) Microstructure and mechanical properties of ABOw and nickel-coated MWCNTs reinforced 2024Al hybrid composite fabricated by squeeze casting. Mater Chem Phy 226:344–349CrossRef Qian MF, Zhang XX, Li JC, Gao X, Geng L (2019) Microstructure and mechanical properties of ABOw and nickel-coated MWCNTs reinforced 2024Al hybrid composite fabricated by squeeze casting. Mater Chem Phy 226:344–349CrossRef
25.
Zurück zum Zitat Kaveendran B, Wang GS, Huang LJ, Geng L, Luo Y, Peng HX (2013) In situ (Al3Zrp+Al2O3np)/2024Al metal matrix composite with controlled reinforcement architecture fabricated by reaction hot pressing. Mater Sci Eng A 583:89–95CrossRef Kaveendran B, Wang GS, Huang LJ, Geng L, Luo Y, Peng HX (2013) In situ (Al3Zrp+Al2O3np)/2024Al metal matrix composite with controlled reinforcement architecture fabricated by reaction hot pressing. Mater Sci Eng A 583:89–95CrossRef
26.
Zurück zum Zitat Zhang XZ, Zhang Q, Hu H (2014) Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mater Sci Eng A 607:269–276CrossRef Zhang XZ, Zhang Q, Hu H (2014) Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mater Sci Eng A 607:269–276CrossRef
27.
Zurück zum Zitat Feng YC, Geng L, Zheng PQ, Zheng ZZ, Wang GS (2008) Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater Des 29:2023–2026CrossRef Feng YC, Geng L, Zheng PQ, Zheng ZZ, Wang GS (2008) Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater Des 29:2023–2026CrossRef
28.
Zurück zum Zitat Tang SS, Shao SY, Liu HY, Jiang FL, Fu DF, Zhang H, Teng J (2021) Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles. Mater Sci Eng A 804:140732CrossRef Tang SS, Shao SY, Liu HY, Jiang FL, Fu DF, Zhang H, Teng J (2021) Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles. Mater Sci Eng A 804:140732CrossRef
29.
Zurück zum Zitat Deng KK, Shi JY, Wang CJ, Wang XJ, Wu YW, Nie KB, Wu K (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos Part A 43:1280–1284CrossRef Deng KK, Shi JY, Wang CJ, Wang XJ, Wu YW, Nie KB, Wu K (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos Part A 43:1280–1284CrossRef
30.
Zurück zum Zitat Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313CrossRef Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313CrossRef
31.
Zurück zum Zitat Li DG, Chen GQ, Jiang LT, Xiu ZY, Zhang YH, Wu GH (2013) Effect of thermal cycling on the mechanical properties of Cf/Al composites. Mater Sci Eng A 586:330–337CrossRef Li DG, Chen GQ, Jiang LT, Xiu ZY, Zhang YH, Wu GH (2013) Effect of thermal cycling on the mechanical properties of Cf/Al composites. Mater Sci Eng A 586:330–337CrossRef
32.
Zurück zum Zitat Daoud A (2005) Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater Sci Eng A 391:114–120CrossRef Daoud A (2005) Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater Sci Eng A 391:114–120CrossRef
33.
Zurück zum Zitat Tang YP, Liu L, Li WW, Shen B, Hu WB (2009) Interface characteristics and mechanical properties of short carbon fibers/Al composites with different coatings. Appl Surf Sci 255:4393–4400CrossRef Tang YP, Liu L, Li WW, Shen B, Hu WB (2009) Interface characteristics and mechanical properties of short carbon fibers/Al composites with different coatings. Appl Surf Sci 255:4393–4400CrossRef
34.
Zurück zum Zitat Cauê CS, Guilherme MV, Márcio CF, Ulrich T (2019) Low-pressure processing and microstructural evaluation of unidirectional carbon fiber-reinforced aluminum-nickel matrix composites. J Mater Process Tech 269:10–15CrossRef Cauê CS, Guilherme MV, Márcio CF, Ulrich T (2019) Low-pressure processing and microstructural evaluation of unidirectional carbon fiber-reinforced aluminum-nickel matrix composites. J Mater Process Tech 269:10–15CrossRef
35.
Zurück zum Zitat Ding RF, Wang H, Jiang Y, Liu R, Jing K, Sun M (2019) Effects of ZrC addition on the microstructure and mechanical properties of Fe-Cr-Al alloys fabricated by spark plasma sintering. J Alloy Compd 805:1025–1033CrossRef Ding RF, Wang H, Jiang Y, Liu R, Jing K, Sun M (2019) Effects of ZrC addition on the microstructure and mechanical properties of Fe-Cr-Al alloys fabricated by spark plasma sintering. J Alloy Compd 805:1025–1033CrossRef
36.
Zurück zum Zitat Tuzemen C, Yavas B, Akin I, Yucel O, Sahin F, Goller G (2019) Production and characterization of TZM based TiC or ZrC reinforced composites prepared by spark plasma sintering (SPS). J Alloy Compd 781:433–439CrossRef Tuzemen C, Yavas B, Akin I, Yucel O, Sahin F, Goller G (2019) Production and characterization of TZM based TiC or ZrC reinforced composites prepared by spark plasma sintering (SPS). J Alloy Compd 781:433–439CrossRef
37.
Zurück zum Zitat Zhou X, Gao YM, Wang YR, Lu XQ, Li YF (2021) Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. J Alloy Compd 889:161543CrossRef Zhou X, Gao YM, Wang YR, Lu XQ, Li YF (2021) Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. J Alloy Compd 889:161543CrossRef
38.
Zurück zum Zitat Yang HB, Gao T, Zhang H, Nie JF, Liu XF (2019) Enhanced age-hardening behavior in Al-Cu alloys induced by in-situ synthesized TiC nanoparticles. J Mate Sci Technol 35:374–382CrossRef Yang HB, Gao T, Zhang H, Nie JF, Liu XF (2019) Enhanced age-hardening behavior in Al-Cu alloys induced by in-situ synthesized TiC nanoparticles. J Mate Sci Technol 35:374–382CrossRef
39.
Zurück zum Zitat Mandal A, Chakraborty M, Murty BS (2008) Ageing behavior of A356 alloy reinforced with in-situ formed TiB2 particles. Mater Sci Eng A 489:220–226CrossRef Mandal A, Chakraborty M, Murty BS (2008) Ageing behavior of A356 alloy reinforced with in-situ formed TiB2 particles. Mater Sci Eng A 489:220–226CrossRef
40.
Zurück zum Zitat Mozammil S, Karloopia J, Verma R, Jha PK (2019) Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J Alloy Compd 793:454–466CrossRef Mozammil S, Karloopia J, Verma R, Jha PK (2019) Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J Alloy Compd 793:454–466CrossRef
41.
Zurück zum Zitat Chen G, Jin Y, Zhang HM, Han F, Chen Q, Xu JR, Zhao ZD (2018) Microstructures and mechanical properties of in-situ Al3Ti/2024Al composites after solution and subsequent aging treatment. Mater Sci Eng A 724:181–218CrossRef Chen G, Jin Y, Zhang HM, Han F, Chen Q, Xu JR, Zhao ZD (2018) Microstructures and mechanical properties of in-situ Al3Ti/2024Al composites after solution and subsequent aging treatment. Mater Sci Eng A 724:181–218CrossRef
42.
Zurück zum Zitat Wu YN, Zhang JF, Liao HC, Wang YJ, Wu YP (2016) Effect of homogenization temperature on microstructure and conductivity of Al-Mg-Si-Ce alloy. J Mater Eng Perform 25:2720–2726CrossRef Wu YN, Zhang JF, Liao HC, Wang YJ, Wu YP (2016) Effect of homogenization temperature on microstructure and conductivity of Al-Mg-Si-Ce alloy. J Mater Eng Perform 25:2720–2726CrossRef
43.
Zurück zum Zitat Wei HG, Xia FZ, Wang MP (2017) Effect of ingot grain refinement on the tensile properties of 2024 Al alloy sheets. Mater Sci Eng A 682:1–11CrossRef Wei HG, Xia FZ, Wang MP (2017) Effect of ingot grain refinement on the tensile properties of 2024 Al alloy sheets. Mater Sci Eng A 682:1–11CrossRef
44.
Zurück zum Zitat Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK (2018) Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci 8:1669–1685CrossRef Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK (2018) Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci 8:1669–1685CrossRef
45.
Zurück zum Zitat Zhou X, Gao YM, Wang YR, Huang XY (2022) The improved strength and ductility of ZrCp/2024Al composites with a quasi-network microstructure fabricated by spark plasma sintering and T6 heat treatment. Mater Sci Eng A 841:142675CrossRef Zhou X, Gao YM, Wang YR, Huang XY (2022) The improved strength and ductility of ZrCp/2024Al composites with a quasi-network microstructure fabricated by spark plasma sintering and T6 heat treatment. Mater Sci Eng A 841:142675CrossRef
46.
Zurück zum Zitat Du R, Gao Q, Wu SS, Lü SL, Zhou X (2018) Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater Sci Eng A 721:244–250CrossRef Du R, Gao Q, Wu SS, Lü SL, Zhou X (2018) Influence of TiB2 particles on aging behavior of in-situ TiB2/Al-4.5Cu composites. Mater Sci Eng A 721:244–250CrossRef
47.
Zurück zum Zitat Hajjari E, Divandari M, Mirhabibi AR (2010) The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting. Mater Des 31:2381–2386CrossRef Hajjari E, Divandari M, Mirhabibi AR (2010) The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting. Mater Des 31:2381–2386CrossRef
48.
Zurück zum Zitat Sánchez M, Rams J, Ureña A (2010) Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process. Compos Part A 41:1605–1611CrossRef Sánchez M, Rams J, Ureña A (2010) Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process. Compos Part A 41:1605–1611CrossRef
49.
Zurück zum Zitat Goha CS, Weib J, Leeb LC, Gupta M (2007) Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater 15:5115–5121CrossRef Goha CS, Weib J, Leeb LC, Gupta M (2007) Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater 15:5115–5121CrossRef
50.
Zurück zum Zitat Dan CY, Chen Z, Ji G, Zhong SH, Wu Y, Brisset F, Wang HW, Ji V (2017) Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites. Mater Des 130:357–365CrossRef Dan CY, Chen Z, Ji G, Zhong SH, Wu Y, Brisset F, Wang HW, Ji V (2017) Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites. Mater Des 130:357–365CrossRef
51.
Zurück zum Zitat Silvain JF (2020) Synergetic effect of discontinuous carbon fibers and graphite flakes on thermo-mechanical properties of aluminum matrix composites fabricated by solid-liquid phase sintering. Met Mater Int 26:155–167CrossRef Silvain JF (2020) Synergetic effect of discontinuous carbon fibers and graphite flakes on thermo-mechanical properties of aluminum matrix composites fabricated by solid-liquid phase sintering. Met Mater Int 26:155–167CrossRef
52.
Zurück zum Zitat Xu Y, Sun W, Xiong X, Liu F, Luan X (2019) Ablation characteristics of mosaic structure ZrC-SiC coatings on low-density, porous C/C composites. J Mater Sci Technol 35(12):2785–2798CrossRef Xu Y, Sun W, Xiong X, Liu F, Luan X (2019) Ablation characteristics of mosaic structure ZrC-SiC coatings on low-density, porous C/C composites. J Mater Sci Technol 35(12):2785–2798CrossRef
53.
Zurück zum Zitat Tian K, Zhao Y, Jiao L, Zhang S, Zhang Z, Wu X (2014) Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites. J Alloy Compd 594:1–6CrossRef Tian K, Zhao Y, Jiao L, Zhang S, Zhang Z, Wu X (2014) Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites. J Alloy Compd 594:1–6CrossRef
54.
Zurück zum Zitat Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54:1321–1326CrossRef Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54:1321–1326CrossRef
55.
Zurück zum Zitat Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford
56.
Zurück zum Zitat Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater Sci Eng A 531:112–118CrossRef Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater Sci Eng A 531:112–118CrossRef
57.
Zurück zum Zitat Campbell FC (2008) Cobalt and cobalt alloys, Elements of metallurgy and engineering alloys. ASM International, Materials Park, 557–562 Campbell FC (2008) Cobalt and cobalt alloys, Elements of metallurgy and engineering alloys. ASM International, Materials Park, 557–562
58.
Zurück zum Zitat Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater Sci Eng A 483:148–152CrossRef Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater Sci Eng A 483:148–152CrossRef
59.
Zurück zum Zitat Yang C, Zhang B, Zhao D, Li X, Zhai T, Han Q, Liu F (2017) In-situ synthesis of AlN/Mg-Al composites with high strength and high plasticity. J Alloy Compd 699:627–632CrossRef Yang C, Zhang B, Zhao D, Li X, Zhai T, Han Q, Liu F (2017) In-situ synthesis of AlN/Mg-Al composites with high strength and high plasticity. J Alloy Compd 699:627–632CrossRef
60.
Zurück zum Zitat Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106:37–47CrossRef Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A (2016) In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106:37–47CrossRef
61.
Zurück zum Zitat Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)—reinforced aluminum matrix composites. Carbon 114:198–208CrossRef Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, Kondoh K (2017) Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)—reinforced aluminum matrix composites. Carbon 114:198–208CrossRef
62.
Zurück zum Zitat Xiong B, Wang C, Liu K, Wang Z, Xie Z, Zhang T, Li X (2021) Interfacial phase induced load transfer in short carbon fiber reinforced Nb/Nb5Si3 composites. Mater Sci Eng A 799:140156CrossRef Xiong B, Wang C, Liu K, Wang Z, Xie Z, Zhang T, Li X (2021) Interfacial phase induced load transfer in short carbon fiber reinforced Nb/Nb5Si3 composites. Mater Sci Eng A 799:140156CrossRef
63.
Zurück zum Zitat Joshi SP, Eberl C, Cao B, Ramesh KT, Hemker KJ (2009) On the occurrence of Portevin-Le Châtelier Instabilities in Ultrafine-grained 5083 aluminum alloys. Exp Mech 49:207–218CrossRef Joshi SP, Eberl C, Cao B, Ramesh KT, Hemker KJ (2009) On the occurrence of Portevin-Le Châtelier Instabilities in Ultrafine-grained 5083 aluminum alloys. Exp Mech 49:207–218CrossRef
64.
Zurück zum Zitat Ramakrishnan N (1996) An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater 44:69–77CrossRef Ramakrishnan N (1996) An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater 44:69–77CrossRef
Metadaten
Titel
Comparison of mechanical properties of 2024Al composites strengthened with the carbon fibers and/or ZrC particles
verfasst von
Xuan Zhou
Yimin Gao
Yiran Wang
Peng Xiao
Publikationsdatum
09.05.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08530-3

Weitere Artikel der Ausgabe 19/2023

Journal of Materials Science 19/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.