Skip to main content
Erschienen in: Journal of Materials Science 12/2024

20.02.2024 | The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

A Gaussian process autoregressive model capturing microstructure evolution paths in a Ni–Mo–Nb alloy

verfasst von: Andrew Marshall, Adam Generale, Surya R. Kalidindi, Bala Radhakrishnan, Jim Belak

Erschienen in: Journal of Materials Science | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing is increasingly being employed to produce components of complex geometries in structural alloys because of the expected energy savings associated with the near-net-shape capability and the ability to build in novel internal features that are not possible with many conventional manufacturing approaches. However, because of the extreme thermal conditions encountered, the non-equilibrium microstructures produced during powder bed-based additive manufacturing processes must be subjected to custom post-heat treatment processes to recover the target mechanical properties. Phase-field models and simulation techniques have matured to a state where the microstructure evolution paths, and the morphologies of the resulting precipitate phases can be predicted reasonably accurately, considering alloy-specific thermodynamic and kinetic aspects of the nucleation and growth processes. However, phase-field simulations are computationally intensive, which precludes the ability to apply the simulations directly to the length scale of the entire component. Therefore, it is highly desirable to develop low-computational-cost surrogate models that effectively capture the physics at the microstructural length scale, while facilitating the design of optimized processing conditions resulting in location-specific targeted microstructures at the component scale. The work presented here demonstrates the application of the materials knowledge system framework to develop a surrogate model that effectively captures the microstructural path during annealing of a Ni–Mo–Nb alloy containing different Mo and Nb compositions known to segregate during solidification under additive manufacturing conditions. Specifically, the surrogate model built in this work is based on a Gaussian process autoregressive model informed by statistical representation of simulated microstructures using two-point correlations and dimensionality reduction through principal component analysis. This surrogate model is shown to capture the bifurcation of the microstructural path during precipitation, which yields a microstructure dominated by the \({\gamma }^{{\prime}{\prime}}\) phase at high Nb concentrations and the \(\delta\) phase at low Nb concentrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Features were standardized by subtracting their mean values and dividing by their standard deviations.
 
Literatur
1.
Zurück zum Zitat Laleh M, Sadeghi E, Revilla RI, Chao Q, Haghdadi N, Hughes AE, Xu W, De Graeve I, Qian M, Gibson I (2022) Progr Mater Sci 133:101051 Laleh M, Sadeghi E, Revilla RI, Chao Q, Haghdadi N, Hughes AE, Xu W, De Graeve I, Qian M, Gibson I (2022) Progr Mater Sci 133:101051
2.
Zurück zum Zitat Baganis A, Bouzouni M, Papaefthymiou S (2021) Metals 11:241 Baganis A, Bouzouni M, Papaefthymiou S (2021) Metals 11:241
3.
Zurück zum Zitat Fleck M, Schleifer F, Holzinger M, Glatzel U (2018) Metall Mater Trans A 49:4146 Fleck M, Schleifer F, Holzinger M, Glatzel U (2018) Metall Mater Trans A 49:4146
4.
Zurück zum Zitat Schleifer F, Fleck M, Holzinger M, Lin Y-Y, Glatzel U (2020) Phase-field modeling of γ′ and γ″precipitate size evolution during heat treatment of Ni-based superalloys. Superalloys. Springer, p 500 Schleifer F, Fleck M, Holzinger M, Lin Y-Y, Glatzel U (2020) Phase-field modeling of γ′ and γ″precipitate size evolution during heat treatment of Ni-based superalloys. Superalloys. Springer, p 500
5.
Zurück zum Zitat Wen Y, Wang B, Simmons J, Wang Y (2006) Acta Mater 54:2087 Wen Y, Wang B, Simmons J, Wang Y (2006) Acta Mater 54:2087
6.
Zurück zum Zitat Yenusah CO, Ji Y, Liu Y, Stone TW, Horstemeyer MF, Chen L-Q, Chen L (2021) Comput Mater Sci 187:110123 Yenusah CO, Ji Y, Liu Y, Stone TW, Horstemeyer MF, Chen L-Q, Chen L (2021) Comput Mater Sci 187:110123
7.
Zurück zum Zitat Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data. Elsevier Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data. Elsevier
8.
Zurück zum Zitat Alpas A, Zhang J (1994) Metall Mater Trans A 25:969 Alpas A, Zhang J (1994) Metall Mater Trans A 25:969
9.
Zurück zum Zitat Huang L, Geng L, Wang B, Wu L (2013) Mater Des 45:532 Huang L, Geng L, Wang B, Wu L (2013) Mater Des 45:532
10.
Zurück zum Zitat Nazarian A, Stauber M, Zurakowski D, Snyder BD, Müller R (2006) Bone 39:1196PubMed Nazarian A, Stauber M, Zurakowski D, Snyder BD, Müller R (2006) Bone 39:1196PubMed
11.
Zurück zum Zitat Oñorbe E, Garcés G, Pérez P, Adeva P (2012) J Mater Sci 47:1085 Oñorbe E, Garcés G, Pérez P, Adeva P (2012) J Mater Sci 47:1085
12.
Zurück zum Zitat Baniassadi M, Ahzi S, Garmestani H, Ruch D, Remond Y (2012) J Mech Phys Solids 60:104 Baniassadi M, Ahzi S, Garmestani H, Ruch D, Remond Y (2012) J Mech Phys Solids 60:104
13.
Zurück zum Zitat Cecen A, Yabansu YC, Kalidindi SR (2018) Acta Mater 158:53 Cecen A, Yabansu YC, Kalidindi SR (2018) Acta Mater 158:53
14.
Zurück zum Zitat Moore AW, Connolly AJ, Genovese C, Gray A, Grone L, Kanidoris N II, Nichol RC, Schneider J, Szalay AS, Szapudi I (2001) Fast algorithms and efficient statistics: N-point correlation functions, in Mining the Sky. Springer, p 71 Moore AW, Connolly AJ, Genovese C, Gray A, Grone L, Kanidoris N II, Nichol RC, Schneider J, Szalay AS, Szapudi I (2001) Fast algorithms and efficient statistics: N-point correlation functions, in Mining the Sky. Springer, p 71
15.
Zurück zum Zitat Sun Y, Cecen A, Gibbs JW, Kalidindi SR, Voorhees PW (2017) Acta Mater 132:374 Sun Y, Cecen A, Gibbs JW, Kalidindi SR, Voorhees PW (2017) Acta Mater 132:374
16.
Zurück zum Zitat Jolliffe I (2005) Encyclopedia of statistics in behavioral science Jolliffe I (2005) Encyclopedia of statistics in behavioral science
17.
Zurück zum Zitat Rajan K, Suh C, Mendez PF (2009) Stat Anal Data Min ASA Data Sci J 1:361 Rajan K, Suh C, Mendez PF (2009) Stat Anal Data Min ASA Data Sci J 1:361
18.
Zurück zum Zitat Suh C, Rajagopalan A, Li X, Rajan K (2002) Data Sci J 1:19 Suh C, Rajagopalan A, Li X, Rajan K (2002) Data Sci J 1:19
19.
Zurück zum Zitat Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Syst 2:37 Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Syst 2:37
20.
Zurück zum Zitat Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR (2018) Acta Mater 144:758 Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR (2018) Acta Mater 144:758
21.
Zurück zum Zitat Latypov MI, Kühbach M, Beyerlein IJ, Stinville J-C, Toth LS, Pollock TM, Kalidindi SR (2018) Mater Charact 145:671 Latypov MI, Kühbach M, Beyerlein IJ, Stinville J-C, Toth LS, Pollock TM, Kalidindi SR (2018) Mater Charact 145:671
22.
Zurück zum Zitat Latypov MI, Toth LS, Kalidindi SR (2019) Comput Methods Appl Mech Eng 346:180 Latypov MI, Toth LS, Kalidindi SR (2019) Comput Methods Appl Mech Eng 346:180
23.
Zurück zum Zitat Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi SR (2019) Acta Mater 178:45 Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi SR (2019) Acta Mater 178:45
24.
Zurück zum Zitat Bro R, Smilde AK (2014) Anal Methods 6:2812 Bro R, Smilde AK (2014) Anal Methods 6:2812
26.
Zurück zum Zitat Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi S, Garmestani H (2001) J Mech Phys Solids 49:1639 Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi S, Garmestani H (2001) J Mech Phys Solids 49:1639
27.
Zurück zum Zitat Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Integr Mater Manuf Innov 2:54 Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Integr Mater Manuf Innov 2:54
28.
Zurück zum Zitat Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Acta Mater 146:76 Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Acta Mater 146:76
29.
Zurück zum Zitat Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Acta Mater 91:239 Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Acta Mater 91:239
30.
Zurück zum Zitat Marshall A, Kalidindi SR (2021) JOM 73:2085 Marshall A, Kalidindi SR (2021) JOM 73:2085
31.
Zurück zum Zitat Yang Z, Yabansu YC, Al-Bahrani R, Liao W-K, Choudhary AN, Kalidindi SR, Agrawal A (2018) Comput Mater Sci 151:278 Yang Z, Yabansu YC, Al-Bahrani R, Liao W-K, Choudhary AN, Kalidindi SR, Agrawal A (2018) Comput Mater Sci 151:278
32.
Zurück zum Zitat Harrington GH, Kelly C, Attari V, Arroyave R, Kalidindi SR (2022) Integr Mater Manuf Innov 11:433 Harrington GH, Kelly C, Attari V, Arroyave R, Kalidindi SR (2022) Integr Mater Manuf Innov 11:433
33.
Zurück zum Zitat Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B (2017) Acta Mater 124:182 Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B (2017) Acta Mater 124:182
34.
Zurück zum Zitat Hashemi S, Kalidindi SR (2021) Comput Mater Sci 188:110132 Hashemi S, Kalidindi SR (2021) Comput Mater Sci 188:110132
35.
Zurück zum Zitat de Montes Oca Zapiain D, Stewart JA, Dingreville R (2021) Comput Mater 7:3 de Montes Oca Zapiain D, Stewart JA, Dingreville R (2021) Comput Mater 7:3
36.
Zurück zum Zitat Yabansu YC, Rehn V, Hötzer J, Nestler B, Kalidindi SR (2019) Modell Simul Mater Sci Eng 27:084006 Yabansu YC, Rehn V, Hötzer J, Nestler B, Kalidindi SR (2019) Modell Simul Mater Sci Eng 27:084006
37.
Zurück zum Zitat Hashemi S, Kalidindi SR (2023) Int J Plast 162:103532 Hashemi S, Kalidindi SR (2023) Int J Plast 162:103532
38.
Zurück zum Zitat Deng Z, Hu X, Lin X, Che Y, Xu L, Guo W (2020) Energy 205:118000 Deng Z, Hu X, Lin X, Che Y, Xu L, Guo W (2020) Energy 205:118000
39.
Zurück zum Zitat Cheruvathur S, Lass EA, Campbell CE (2016) Jom 68:930 Cheruvathur S, Lass EA, Campbell CE (2016) Jom 68:930
40.
Zurück zum Zitat Khan MA, Gupta K (2020) Trans Indian Inst Met 73:429 Khan MA, Gupta K (2020) Trans Indian Inst Met 73:429
41.
Zurück zum Zitat Sangid MD, Book TA, Naragani D, Rotella J, Ravi P, Finch A, Kenesei P, Park J-S, Sharma H, Almer J (2018) Addit Manuf 22:479 Sangid MD, Book TA, Naragani D, Rotella J, Ravi P, Finch A, Kenesei P, Park J-S, Sharma H, Almer J (2018) Addit Manuf 22:479
42.
Zurück zum Zitat Teixeira Ó, Silva FJ, Ferreira LP, Atzeni E (2020) Metals 10:1006 Teixeira Ó, Silva FJ, Ferreira LP, Atzeni E (2020) Metals 10:1006
43.
Zurück zum Zitat Lass EA, Stoudt MR, Katz MB, Williams ME (2018) Scripta Mater 154:83 Lass EA, Stoudt MR, Katz MB, Williams ME (2018) Scripta Mater 154:83
44.
Zurück zum Zitat Azadian S, Wei L-Y, Warren R (2004) Mater Charact 53:7 Azadian S, Wei L-Y, Warren R (2004) Mater Charact 53:7
45.
Zurück zum Zitat Huang Y, Langdon TG (2007) J Mater Sci 42:421 Huang Y, Langdon TG (2007) J Mater Sci 42:421
46.
Zurück zum Zitat Mahadevan S, Nalawade S, Singh JB, Verma A, Paul B, Ramaswamy K (2010) Evolution of δ phase microstructure in alloy 718. In: Proceedings of the 7th International Symposium on Superalloy Mahadevan S, Nalawade S, Singh JB, Verma A, Paul B, Ramaswamy K (2010) Evolution of δ phase microstructure in alloy 718. In: Proceedings of the 7th International Symposium on Superalloy
47.
Zurück zum Zitat Sundararaman M, Mukhopadhyay P, Banerjee S (1988) Metall Trans A 19:453 Sundararaman M, Mukhopadhyay P, Banerjee S (1988) Metall Trans A 19:453
48.
Zurück zum Zitat Hong S, Chen W, Wang T (2001) Metall Mater Trans A 32:1887 Hong S, Chen W, Wang T (2001) Metall Mater Trans A 32:1887
49.
Zurück zum Zitat Du J, Lu X, Deng Q, Qu J, Zhuang J, Zhong Z (2007) Mater Sci Eng A 452:584 Du J, Lu X, Deng Q, Qu J, Zhuang J, Zhong Z (2007) Mater Sci Eng A 452:584
50.
Zurück zum Zitat Gallmeyer TG, Moorthy S, Kappes BB, Mills MJ, Amin-Ahmadi B, Stebner AP (2020) Addit Manuf 31:100977 Gallmeyer TG, Moorthy S, Kappes BB, Mills MJ, Amin-Ahmadi B, Stebner AP (2020) Addit Manuf 31:100977
51.
Zurück zum Zitat Teng Q, Li S, Wei Q, Shi Y (2021) J Manuf Process 61:35 Teng Q, Li S, Wei Q, Shi Y (2021) J Manuf Process 61:35
53.
Zurück zum Zitat Radhakrishnan B, Fatebert J-l, Gorti SB, Haxhimali T, El-Wardany T, Acharya R, Staroselsky A (2017) Integrated predictive tools for customizing microstructure and material properties of additively manufactured aerospace components, ORNL/TM-2017/718. https://doi.org/10.2172/1414688 Radhakrishnan B, Fatebert J-l, Gorti SB, Haxhimali T, El-Wardany T, Acharya R, Staroselsky A (2017) Integrated predictive tools for customizing microstructure and material properties of additively manufactured aerospace components, ORNL/TM-2017/718. https://​doi.​org/​10.​2172/​1414688
54.
Zurück zum Zitat Radhakrishnan, B., S.B. Gorti, J.A. Turner, and R. Acharya. Radhakrishnan, B., S.B. Gorti, J.A. Turner, and R. Acharya.
55.
Zurück zum Zitat Song Y, Radhakrishnan B, Gorti S, Acharya R (2021) Phys Rev Mater 5:053401 Song Y, Radhakrishnan B, Gorti S, Acharya R (2021) Phys Rev Mater 5:053401
56.
Zurück zum Zitat Andersson J-O, Helander T, Höglund L, Shi P, Sundman B (2002) Calphad 26:273 Andersson J-O, Helander T, Höglund L, Shi P, Sundman B (2002) Calphad 26:273
57.
Zurück zum Zitat Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide. Elsevier Saunders N, Miodownik AP (1998) CALPHAD (calculation of phase diagrams): a comprehensive guide. Elsevier
58.
Zurück zum Zitat Steinbach I, Apel M (2006) Physica D 217:153 Steinbach I, Apel M (2006) Physica D 217:153
59.
Zurück zum Zitat Chen LQ, Shen J (1998) Comput Phys Commun 108:147 Chen LQ, Shen J (1998) Comput Phys Commun 108:147
60.
Zurück zum Zitat Pekurovsky D (2012) SIAM J Sci Comput 34:C192 Pekurovsky D (2012) SIAM J Sci Comput 34:C192
61.
Zurück zum Zitat Turner JA, Belak J, Barton N, Bement M, Carlson N, Carson R, DeWitt S, Fattebert J-L, Hodge N, Jibben Z (2022) Int J High Perform Comput Appl 36:13 Turner JA, Belak J, Barton N, Bement M, Carlson N, Carson R, DeWitt S, Fattebert J-L, Hodge N, Jibben Z (2022) Int J High Perform Comput Appl 36:13
62.
Zurück zum Zitat Shi R, Wang Y (2013) Acta Mater 61:6006 Shi R, Wang Y (2013) Acta Mater 61:6006
63.
64.
Zurück zum Zitat Cecen A, Fast T, Kalidindi SR (2016) Integr Mater Manuf Innov 5:1 Cecen A, Fast T, Kalidindi SR (2016) Integr Mater Manuf Innov 5:1
65.
Zurück zum Zitat Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Acta Mater 56:942 Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Acta Mater 56:942
66.
Zurück zum Zitat Gao X, Przybyla C, Adams B (2006) Metall Mater Trans A 37:2379 Gao X, Przybyla C, Adams B (2006) Metall Mater Trans A 37:2379
67.
Zurück zum Zitat Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Prog Mater Sci 55:477 Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Prog Mater Sci 55:477
68.
Zurück zum Zitat Choudhury A, Yabansu YC, Kalidindi SR, Dennstedt A (2016) Acta Mater 110:131 Choudhury A, Yabansu YC, Kalidindi SR, Dennstedt A (2016) Acta Mater 110:131
69.
Zurück zum Zitat Latypov MI, Kalidindi SR (2017) J Comput Phys 346:242 Latypov MI, Kalidindi SR (2017) J Comput Phys 346:242
70.
Zurück zum Zitat Robertson AE, Kalidindi SR (2022) Acta Mater 232:117927 Robertson AE, Kalidindi SR (2022) Acta Mater 232:117927
71.
Zurück zum Zitat Niezgoda S, Fullwood D, Kalidindi S (2008) Acta Mater 56:5285 Niezgoda S, Fullwood D, Kalidindi S (2008) Acta Mater 56:5285
72.
Zurück zum Zitat Fullwood D, Kalidindi S, Niezgoda S, Fast A, Hampson N (2008) Mater Sci Eng A 494:68 Fullwood D, Kalidindi S, Niezgoda S, Fast A, Hampson N (2008) Mater Sci Eng A 494:68
73.
Zurück zum Zitat Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Acta Mater 59:6387 Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Acta Mater 59:6387
74.
Zurück zum Zitat Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. Springer Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning. Springer
76.
Zurück zum Zitat Journel AG, Huijbregts CJ (2003) Mining geostatistics. Blackburn Press Journel AG, Huijbregts CJ (2003) Mining geostatistics. Blackburn Press
77.
Zurück zum Zitat Titsias M (2009) Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, PMLR 5:567–574 Titsias M (2009) Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, PMLR 5:567–574
78.
Zurück zum Zitat Mohammadpour P, Yuan H, Phillion A (2022) Addit Manuf 55:102824 Mohammadpour P, Yuan H, Phillion A (2022) Addit Manuf 55:102824
79.
Zurück zum Zitat Zhou N, Lv D, Zhang H, McAllister D, Zhang F, Mills M, Wang Y (2014) Acta Mater 65:270 Zhou N, Lv D, Zhang H, McAllister D, Zhang F, Mills M, Wang Y (2014) Acta Mater 65:270
Metadaten
Titel
A Gaussian process autoregressive model capturing microstructure evolution paths in a Ni–Mo–Nb alloy
verfasst von
Andrew Marshall
Adam Generale
Surya R. Kalidindi
Bala Radhakrishnan
Jim Belak
Publikationsdatum
20.02.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2024
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-024-09345-6

Weitere Artikel der Ausgabe 12/2024

Journal of Materials Science 12/2024 Zur Ausgabe

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

In situ SEM characterization of tensile behavior of nano-fibrous Al–Si and Al–Si–Sr eutectics

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

Dislocation structure during nano-indentation and surface topographic maps

The Physics of Metal Plasticity: in honor of Professor Hussein Zbib

Oxidation-induced stiffening versus weakening in semicrystalline polymers

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.