Skip to main content
Erschienen in: Journal of Scientific Computing 3/2014

01.03.2014

Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations

verfasst von: Huadong Gao

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study in this paper two linearized backward Euler schemes with Galerkin finite element approximations for the time-dependent nonlinear Joule heating equations. By introducing a time-discrete (elliptic) system as proposed in Li and Sun (Int J Numer Anal Model 10:622–633, 2013; SIAM J Numer Anal (to appear)), we split the error function as the temporal error function plus the spatial error function, and then we present unconditionally optimal error estimates of \(r\)th order Galerkin FEMs (\(1 \le r \le 3\)). Numerical results in two and three dimensional spaces are provided to confirm our theoretical analysis and show the unconditional stability (convergence) of the schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)CrossRefMATHMathSciNet Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Akrivis, G., Larsson, S.: Linearly implicit finite element methods for the time dependent Joule heating problem. BIT 45, 429–442 (2005)CrossRefMATHMathSciNet Akrivis, G., Larsson, S.: Linearly implicit finite element methods for the time dependent Joule heating problem. BIT 45, 429–442 (2005)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Allegretto, W., Xie, H.: Existence of solutions for the time dependent thermistor equation. IMA. J. Appl. Math. 48, 271–281 (1992)CrossRefMATHMathSciNet Allegretto, W., Xie, H.: Existence of solutions for the time dependent thermistor equation. IMA. J. Appl. Math. 48, 271–281 (1992)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Allegretto, W., Yan, N.: A posteriori error analysis for FEM of thermistor problems. Int. J. Numer. Anal. Model. 3, 413–436 (2006)MATHMathSciNet Allegretto, W., Yan, N.: A posteriori error analysis for FEM of thermistor problems. Int. J. Numer. Anal. Model. 3, 413–436 (2006)MATHMathSciNet
5.
Zurück zum Zitat Allegretto, W., Lin, Y., Ma, S.: Existence and long time behavior of solutions to obstacle thermistor equations. Discrete Contin. Dyn. Syst. Ser. A 8, 757–780 (2002)CrossRefMATHMathSciNet Allegretto, W., Lin, Y., Ma, S.: Existence and long time behavior of solutions to obstacle thermistor equations. Discrete Contin. Dyn. Syst. Ser. A 8, 757–780 (2002)CrossRefMATHMathSciNet
6.
Zurück zum Zitat Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)CrossRefMATH Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)CrossRefMATH
7.
Zurück zum Zitat Cimatti, G.: Existence of weak solutions for the nonstationary problem of the joule heating of a conductor. Ann. Mat. Pura Appl. 162, 33–42 (1992)CrossRefMATHMathSciNet Cimatti, G.: Existence of weak solutions for the nonstationary problem of the joule heating of a conductor. Ann. Mat. Pura Appl. 162, 33–42 (1992)CrossRefMATHMathSciNet
8.
Zurück zum Zitat Chen, Y.Z., Wu, L.C.: Second order elliptic equations and elliptic systems, Translations of Mathematical Monographs 174, AMS, USA (1998) Chen, Y.Z., Wu, L.C.: Second order elliptic equations and elliptic systems, Translations of Mathematical Monographs 174, AMS, USA (1998)
9.
Zurück zum Zitat Chen, Z., Hoffmann, K.-H.: Numerical studies of a non-stationary Ginzburg–Landau model for superconductivity. Adv. Math. Sci. Appl. 5, 363–389 (1995)MATHMathSciNet Chen, Z., Hoffmann, K.-H.: Numerical studies of a non-stationary Ginzburg–Landau model for superconductivity. Adv. Math. Sci. Appl. 5, 363–389 (1995)MATHMathSciNet
10.
Zurück zum Zitat Deng, Z., Ma, H.: Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations. Appl. Numer. Math. 59, 988–1010 (2009)CrossRefMATHMathSciNet Deng, Z., Ma, H.: Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations. Appl. Numer. Math. 59, 988–1010 (2009)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Douglas Jr, J., Ewing, R., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)MATHMathSciNet Douglas Jr, J., Ewing, R., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–265 (1983)MATHMathSciNet
12.
Zurück zum Zitat Elliott, C.M., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comput. 64, 1433–1453 (1995)CrossRefMATHMathSciNet Elliott, C.M., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comput. 64, 1433–1453 (1995)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)CrossRefMATHMathSciNet Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)CrossRefMATHMathSciNet
14.
Zurück zum Zitat He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)CrossRefMATH He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)CrossRefMATH
15.
Zurück zum Zitat Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)CrossRefMATHMathSciNet Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Holst, M.J., Larson, M.G., Malqvist, A., Axel, R.: Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions. BIT 50, 781–795 (2010)CrossRefMATHMathSciNet Holst, M.J., Larson, M.G., Malqvist, A., Axel, R.: Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions. BIT 50, 781–795 (2010)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)CrossRefMATHMathSciNet Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Kellogg, B., Liu, B.: The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87, 153–170 (2000)CrossRefMATHMathSciNet Kellogg, B., Liu, B.: The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87, 153–170 (2000)CrossRefMATHMathSciNet
19.
Zurück zum Zitat Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MATHMathSciNet Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MATHMathSciNet
20.
Zurück zum Zitat Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013) Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)
21.
Zurück zum Zitat Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. PhD Thesis, City University of Hong Kong, Hong Kong (2012) Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. PhD Thesis, City University of Hong Kong, Hong Kong (2012)
23.
Zurück zum Zitat Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)CrossRefMATHMathSciNet Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)CrossRefMATHMathSciNet
24.
Zurück zum Zitat Mu, M., Huang, Y.: An alternating Crank–Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)CrossRefMATHMathSciNet Mu, M., Huang, Y.: An alternating Crank–Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)MATHMathSciNet Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)MATHMathSciNet
26.
Zurück zum Zitat Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)CrossRefMATHMathSciNet Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH
28.
Zurück zum Zitat Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)CrossRefMATHMathSciNet Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)CrossRefMATHMathSciNet
29.
Zurück zum Zitat Wang, K., Wang, H.: An optimal-order error estimate to ELLAM schemes for transient advection–diffusion equations on unstructured meshes. SIAM J. Numer. Anal. 48, 681–707 (2010)CrossRefMATHMathSciNet Wang, K., Wang, H.: An optimal-order error estimate to ELLAM schemes for transient advection–diffusion equations on unstructured meshes. SIAM J. Numer. Anal. 48, 681–707 (2010)CrossRefMATHMathSciNet
30.
Zurück zum Zitat Wu, H., Ma, H., Li, H.: Optimal error estimates of the Chebyshev–Legendre spectral method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)CrossRefMATHMathSciNet Wu, H., Ma, H., Li, H.: Optimal error estimates of the Chebyshev–Legendre spectral method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Yue, X.: Numerical analysis of nonstationary thermistor problem. J. Comput. Math. 12, 213–223 (1994)MATHMathSciNet Yue, X.: Numerical analysis of nonstationary thermistor problem. J. Comput. Math. 12, 213–223 (1994)MATHMathSciNet
33.
Zurück zum Zitat Yuan, G., Liu, Z.: Existence and uniqueness of the \(C^\alpha \) solution for the thermistor problem with mixed boundary value. SIAM J. Math. Anal. 25, 1157–1166 (1994)CrossRefMATHMathSciNet Yuan, G., Liu, Z.: Existence and uniqueness of the \(C^\alpha \) solution for the thermistor problem with mixed boundary value. SIAM J. Math. Anal. 25, 1157–1166 (1994)CrossRefMATHMathSciNet
34.
Zurück zum Zitat Zhao, W.: Convergence analysis of finite element method for the nonstationary thermistor problem. Shandong Daxue Xuebao 29, 361–367 (1994)MATH Zhao, W.: Convergence analysis of finite element method for the nonstationary thermistor problem. Shandong Daxue Xuebao 29, 361–367 (1994)MATH
35.
Metadaten
Titel
Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations
verfasst von
Huadong Gao
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-013-9746-4

Weitere Artikel der Ausgabe 3/2014

Journal of Scientific Computing 3/2014 Zur Ausgabe

Premium Partner