Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

22.09.2015

A Galerkin Finite Element Method for a Class of Time–Space Fractional Differential Equation with Nonsmooth Data

verfasst von: Zhengang Zhao, Yunying Zheng, Peng Guo

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a Galerkin finite element approximation for a class of time–space fractional differential equation is studied, under the assumption that \(u_{tt}, u_{ttt}, u_{2\alpha ,tt}\) are continuous for \(\varOmega \times (0,T]\), but discontinuous at time \(t=0\). In spatial direction, the Galerkin finite element method is presented. And in time direction, a Crank–Nicolson time-stepping is used to approximate the fractional differential term, and the product trapezoidal method is employed to treat the temporal fractional integral term. By using the properties of the fractional Ritz projection and the fractional Ritz–Volterra projection, the convergence analyses of semi-discretization scheme and full discretization scheme are derived separately. Due to the lack of smoothness of the exact solution, the numerical accuracy does not achieve second order convergence in time, which is \(O(k^{3-\beta }+k^{3}t_{n+1}^{-\beta }+k^{3}t_{n+1}^{-\beta -1})\), \(n=0,1,\ldots ,N-1\). But the convergence order in time is shown to be greater than one. Numerical examples are also included to demonstrate the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
2.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaeert, M.M.: The fractional order governing equations of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaeert, M.M.: The fractional order governing equations of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef
3.
Zurück zum Zitat Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)MathSciNetCrossRef Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)MathSciNetCrossRef
4.
Zurück zum Zitat Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968)MathSciNetCrossRefMATH Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Miller, R.K.: An integro-differential equation for grid heat conductions with memory. J. Math. Anal. Appl. 66, 313–332 (1978)MathSciNetCrossRef Miller, R.K.: An integro-differential equation for grid heat conductions with memory. J. Math. Anal. Appl. 66, 313–332 (1978)MathSciNetCrossRef
6.
Zurück zum Zitat Baleanu, D., Güvenc, Z.B., Tenreiro Machado, J.A.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2009)MATH Baleanu, D., Güvenc, Z.B., Tenreiro Machado, J.A.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2009)MATH
7.
Zurück zum Zitat Christensen, R.M.: Theory of Viscolasticity. Academic Press, New York (1971) Christensen, R.M.: Theory of Viscolasticity. Academic Press, New York (1971)
9.
Zurück zum Zitat Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)MathSciNetMATH Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)MathSciNetMATH
10.
Zurück zum Zitat Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time–space fractional Fokker–Planck equation with a nonlinear source term. Int. J. Diff. Eq. (2010). doi:10.1155/2010/464321 Yang, Q., Liu, F., Turner, I.: Stability and convergence of an effective numerical method for the time–space fractional Fokker–Planck equation with a nonlinear source term. Int. J. Diff. Eq. (2010). doi:10.​1155/​2010/​464321
11.
Zurück zum Zitat Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Zhao, Z.G., Li, C.P.: Fractional difference/finite element approximations for the time–space fractional telegraph equation. Appl. Math. Comput. 219, 2975–2988 (2012)MathSciNetMATH Zhao, Z.G., Li, C.P.: Fractional difference/finite element approximations for the time–space fractional telegraph equation. Appl. Math. Comput. 219, 2975–2988 (2012)MathSciNetMATH
13.
Zurück zum Zitat Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch–Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013) Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch–Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)
14.
Zurück zum Zitat Yu, Q., Liu, F., Turner, I., Burrage, K.: Stability and convergence of an implicit numerical method for the space and time fractional Bloch–Torrey equation. Phil. Trans. R. Soc. (2013). doi:10.1098/rsta.2012.0150 Yu, Q., Liu, F., Turner, I., Burrage, K.: Stability and convergence of an implicit numerical method for the space and time fractional Bloch–Torrey equation. Phil. Trans. R. Soc. (2013). doi:10.​1098/​rsta.​2012.​0150
15.
Zurück zum Zitat Song, J., Yu, Q., Liu, F., Turner, I.: A spatially second-order accurate implicit numerical method for the space and time fractional Bloch–Torrey equation. Numer. Algo. 66, 911–932 (2014)MathSciNetCrossRefMATH Song, J., Yu, Q., Liu, F., Turner, I.: A spatially second-order accurate implicit numerical method for the space and time fractional Bloch–Torrey equation. Numer. Algo. 66, 911–932 (2014)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)MathSciNetMATH Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)MathSciNetMATH
17.
Zurück zum Zitat Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time-fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)MathSciNetCrossRefMATH Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time-fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH Zeng, F.H., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)MATH Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)MATH
21.
22.
Zurück zum Zitat Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)MathSciNetCrossRefMATH Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tang, T.: A finite difference scheme for partial integro-differential equation with a weakly singualr kernel. Appl. Numer. Math. 11, 309–319 (1993)MathSciNetCrossRefMATH Tang, T.: A finite difference scheme for partial integro-differential equation with a weakly singualr kernel. Appl. Numer. Math. 11, 309–319 (1993)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Partial Diff. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Partial Diff. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetCrossRefMATH Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRefMATH Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRefMATH Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Bu, W.P., Tang, Y.F., Yang, J.Y.: Galerkin finite element method for two dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)MathSciNetCrossRefMATH Bu, W.P., Tang, Y.F., Yang, J.Y.: Galerkin finite element method for two dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Samko, S.C., Kilbas, A.A., Maxitchev, O.I.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Nauka i Tekhnika, Minsk (1987). (in Russian) Samko, S.C., Kilbas, A.A., Maxitchev, O.I.: Integrals and Derivatives of the Fractional Order and Some of Their Applications. Nauka i Tekhnika, Minsk (1987). (in Russian)
31.
Zurück zum Zitat Chen, C.M., Shih, T.: Finite Element Methods for Integrodifferential Equations. Word Scientific, Singapore (1998)CrossRefMATH Chen, C.M., Shih, T.: Finite Element Methods for Integrodifferential Equations. Word Scientific, Singapore (1998)CrossRefMATH
32.
Zurück zum Zitat Zheng, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2001)MathSciNetCrossRefMATH Zheng, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2001)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York, Berlin (1994)CrossRefMATH Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York, Berlin (1994)CrossRefMATH
34.
Zurück zum Zitat Cannon, J.R., Lin, Y.P.: A priori \(L^{2}\) error estimates for Galerkin methods for nonlinear parbolic integro-differential equations. SIAM J. Numer. Anal. 21, 595–602 (1990)MathSciNetCrossRefMATH Cannon, J.R., Lin, Y.P.: A priori \(L^{2}\) error estimates for Galerkin methods for nonlinear parbolic integro-differential equations. SIAM J. Numer. Anal. 21, 595–602 (1990)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Larsson, S., Thomé, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67, 45–71 (1998)MathSciNetCrossRefMATH Larsson, S., Thomé, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67, 45–71 (1998)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Ma, J.T.: Finite element method for partial Volterra integro-diffeential equations on two-dimensions unbounded spatial domains. Appl. Math. Comput. 186, 598–609 (2007)MathSciNetMATH Ma, J.T.: Finite element method for partial Volterra integro-diffeential equations on two-dimensions unbounded spatial domains. Appl. Math. Comput. 186, 598–609 (2007)MathSciNetMATH
37.
Zurück zum Zitat Zeng, F.H., Cao, J.X., Li, C.P.: Gronwall inequalities, In: Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis. World Scientific, Singapore, pp. 49–68 (2013) Zeng, F.H., Cao, J.X., Li, C.P.: Gronwall inequalities, In: Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis. World Scientific, Singapore, pp. 49–68 (2013)
Metadaten
Titel
A Galerkin Finite Element Method for a Class of Time–Space Fractional Differential Equation with Nonsmooth Data
verfasst von
Zhengang Zhao
Yunying Zheng
Peng Guo
Publikationsdatum
22.09.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0107-3

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe

Premium Partner