Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

08.08.2019

Numerical Algorithms of the Two-dimensional Feynman–Kac Equation for Reaction and Diffusion Processes

verfasst von: Daxin Nie, Jing Sun, Weihua Deng

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper provides a finite difference discretization for the backward Feynman–Kac equation, governing the distribution of functionals of the path for a particle undergoing both reaction and diffusion (Hou and Deng in J Phys A Math Theor 51:155001, 2018). Numerically solving the equation with the time tempered fractional substantial derivative and tempered fractional Laplacian consists in discretizing these two non-local operators. Here, using convolution quadrature, we provide the first-order and second-order schemes for discretizing the time tempered fractional substantial derivative, which doesn’t require the assumption of the regularity of the solution in time; we use the finite difference method to approximate the two-dimensional tempered fractional Laplacian, and the accuracy of the scheme depends on the regularity of the solution on \({\bar{\varOmega }}\) rather than the whole space. Lastly, we verify the predicted convergence orders and the effectiveness of the presented schemes by numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. arXiv:1705.09815 [math.NA] Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. arXiv:​1705.​09815 [math.NA]
3.
Zurück zum Zitat Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)MathSciNetCrossRefMATH Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)MathSciNetCrossRefMATH
4.
5.
Zurück zum Zitat Cairoli, A., Baule, A.: Anomalous processes with general waiting times: functionals and multipoint structure. Phys. Rev. Lett. 115, 110601 (2015)CrossRef Cairoli, A., Baule, A.: Anomalous processes with general waiting times: functionals and multipoint structure. Phys. Rev. Lett. 115, 110601 (2015)CrossRef
6.
Zurück zum Zitat Cairoli, A., Baule, A.: Feynman–Kac equation for anomalous processes with space- and time-dependent forces. J. Phys. A 50, 164002 (2017)MathSciNetCrossRefMATH Cairoli, A., Baule, A.: Feynman–Kac equation for anomalous processes with space- and time-dependent forces. J. Phys. A 50, 164002 (2017)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRefMATH Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cartea, A., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)CrossRef Cartea, A., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)CrossRef
9.
Zurück zum Zitat Chen, K.H.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)CrossRefMATH Chen, K.H.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)CrossRefMATH
10.
Zurück zum Zitat Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman–Kac equation. J. Sci. Comput. 76, 867–887 (2018)MathSciNetCrossRefMATH Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman–Kac equation. J. Sci. Comput. 76, 867–887 (2018)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Chen, M.H., Deng, W.H., Serra-Capizzano, S.: Uniform convergence of V-cycle multigrid algorithms for two-dimensional fractional Feynman–Kac equation. J. Sci. Comput. 74, 1034–1059 (2018)MathSciNetCrossRefMATH Chen, M.H., Deng, W.H., Serra-Capizzano, S.: Uniform convergence of V-cycle multigrid algorithms for two-dimensional fractional Feynman–Kac equation. J. Sci. Comput. 74, 1034–1059 (2018)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRefMATH Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Deng, W.H., Zhang, Z.J.: High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion. World Scientific, Singapore (2019)CrossRefMATH Deng, W.H., Zhang, Z.J.: High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion. World Scientific, Singapore (2019)CrossRefMATH
14.
Zurück zum Zitat Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125–149 (2018)MathSciNetCrossRefMATH Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125–149 (2018)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017)MathSciNetCrossRefMATH Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)MATH Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)MATH
17.
18.
Zurück zum Zitat Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019) MathSciNetMATH Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019) MathSciNetMATH
23.
Zurück zum Zitat Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)MathSciNetCrossRefMATH Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012) MATH Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012) MATH
25.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993) MATH Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993) MATH
27.
Zurück zum Zitat Sun, J., Nie, D.X., Deng, W.H.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. arXiv:1802.02349 [math.NA] Sun, J., Nie, D.X., Deng, W.H.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. arXiv:​1802.​02349 [math.NA]
29.
Zurück zum Zitat Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef
30.
Zurück zum Zitat Wu, X.C., Deng, W.H., Barkai, E.: Tempered fractional Feynman–Kac equation: theory and examples. Phys. Rev. E 93, 032151 (2016)MathSciNetCrossRef Wu, X.C., Deng, W.H., Barkai, E.: Tempered fractional Feynman–Kac equation: theory and examples. Phys. Rev. E 93, 032151 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Xing, Y.Y., Yan, Y.B.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH Xing, Y.Y., Yan, Y.B.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Yang, Y., Yan, Y.B., Ford, N.J.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Math. 18, 129–146 (2018)MathSciNetCrossRefMATH Yang, Y., Yan, Y.B., Ford, N.J.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Math. 18, 129–146 (2018)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Zhang, Z.J., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Methods Appl. 12, 492–516 (2018)MathSciNetCrossRef Zhang, Z.J., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theory Methods Appl. 12, 492–516 (2018)MathSciNetCrossRef
35.
Zurück zum Zitat Zhang, Z.J., Deng, W.H., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010–3039 (2018)MathSciNetCrossRefMATH Zhang, Z.J., Deng, W.H., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010–3039 (2018)MathSciNetCrossRefMATH
Metadaten
Titel
Numerical Algorithms of the Two-dimensional Feynman–Kac Equation for Reaction and Diffusion Processes
verfasst von
Daxin Nie
Jing Sun
Weihua Deng
Publikationsdatum
08.08.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01027-9

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe

Premium Partner