Skip to main content
Erschienen in: Journal of Scientific Computing 3/2019

16.10.2019

Explicit Time Stepping of PDEs with Local Refinement in Space-Time

verfasst von: Dylan Abrahamsen, Bengt Fornberg

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional numerical time stepping allows variable node densities in space, but not also in time. Having the ability to utilize nodes that are placed irregularly in the space-time domain leads to many advantages when solving time dependent problems. In this paper we introduce a new method utilizing the radial basis function generated finite difference approach in order to accomplish this goal. Benefits include improved stability conditions and the option to use small time steps only in select spatial regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Although similar in many respects, RBF-FD (in its form known as PHS + poly, see Sections 5.1.5 and 5.1.7 in [16]) and MLS have also significant differences, as analyzed in [3]. The last paragraph in the Conclusions of this paper notes: “Overall, PHS + poly has performed superior than MLS. It can not only achieve at least the same accuracy than MLS, but can also overcome the harmful Runge’s phenomenon for any polynomial degree. This result potentially opens new opportunities for PHS + poly in areas of application where MLS is the preferred choice”.
 
2
A code for producing this figure can be downloaded from https://​github.​com/​DylanAbrahamsen/​RBF-TD.
 
3
We focus here on AB-FD4 schemes (rather than on RK-FD4 schemes, with internal stages) since these can be displayed as space-time stencils.
 
Literatur
1.
Zurück zum Zitat Abedi, R., Petracovici, B., Haber, R.: A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput. Methods Appl. Mech. Eng. 195(25–28), 3247–3273 (2006)MathSciNetCrossRef Abedi, R., Petracovici, B., Haber, R.: A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance. Comput. Methods Appl. Mech. Eng. 195(25–28), 3247–3273 (2006)MathSciNetCrossRef
2.
Zurück zum Zitat Almquist, M., Mehlin, M.: Multilevel local time-stepping methods of Runge–Kutta-type for wave equations. SIAM J. Sci. Comput. 39(5), A2020–A2048 (2017)MathSciNetCrossRef Almquist, M., Mehlin, M.: Multilevel local time-stepping methods of Runge–Kutta-type for wave equations. SIAM J. Sci. Comput. 39(5), A2020–A2048 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Bayona, V.: Comparison of moving least squares and RBF + poly for interpolation and derivative approximation. J. Sci. Comput. 81(1), 486–512 (2019) MathSciNetCrossRef Bayona, V.: Comparison of moving least squares and RBF + poly for interpolation and derivative approximation. J. Sci. Comput. 81(1), 486–512 (2019) MathSciNetCrossRef
4.
Zurück zum Zitat Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)MathSciNetCrossRef Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Bayona, V., Flyer, N., Fornberg, B., Barnett, G.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)MathSciNetCrossRef Bayona, V., Flyer, N., Fornberg, B., Barnett, G.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)MathSciNetCrossRef
7.
Zurück zum Zitat Demirel, A., Niegemann, J., Busch, K., Hochbruck, M.: Efficient multiple time-stepping algorithms of higher order. J. Comput. Phys. 285, 133–148 (2015)MathSciNetCrossRef Demirel, A., Niegemann, J., Busch, K., Hochbruck, M.: Efficient multiple time-stepping algorithms of higher order. J. Comput. Phys. 285, 133–148 (2015)MathSciNetCrossRef
8.
Zurück zum Zitat Descombes, S., Lanteri, S., Moya, L.: Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations. J. Comput. Phys. 56(1), 190–218 (2013)MathSciNetMATH Descombes, S., Lanteri, S., Moya, L.: Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations. J. Comput. Phys. 56(1), 190–218 (2013)MathSciNetMATH
9.
Zurück zum Zitat Diaz, J., Grote, M.: Multi-level explicit local time-stepping methods for second-order wave equations. Comput. Methods Appl. Mech. Eng. 291, 240–265 (2015)MathSciNetCrossRef Diaz, J., Grote, M.: Multi-level explicit local time-stepping methods for second-order wave equations. Comput. Methods Appl. Mech. Eng. 291, 240–265 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Driscoll, T.A., Heryudono, A.R.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53(6), 927–939 (2007)MathSciNetCrossRef Driscoll, T.A., Heryudono, A.R.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53(6), 927–939 (2007)MathSciNetCrossRef
11.
Zurück zum Zitat Fasshauer, G.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishers, Singapore (2007)CrossRef Fasshauer, G.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishers, Singapore (2007)CrossRef
12.
Zurück zum Zitat Flyer, N., Barnett, G., Wicker, L.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)MathSciNetCrossRef Flyer, N., Barnett, G., Wicker, L.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Flyer, N., Fornberg, B., Barnett, G., Bayona, V.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetCrossRef Flyer, N., Fornberg, B., Barnett, G., Bayona, V.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)MathSciNetCrossRef Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)MathSciNetCrossRef
15.
Zurück zum Zitat Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69, 531–544 (2015)MathSciNetCrossRef Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69, 531–544 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM, Philadelphia (2015)CrossRef Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM, Philadelphia (2015)CrossRef
17.
18.
Zurück zum Zitat Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)MathSciNetCrossRef Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)MathSciNetCrossRef
19.
Zurück zum Zitat Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: Mapped tent pitching schemes for hyperbolic systems. SIAM J. Sci. Comput. 39(6), B1043–B1063 (2017)MathSciNetCrossRef Gopalakrishnan, J., Schöberl, J., Wintersteiger, C.: Mapped tent pitching schemes for hyperbolic systems. SIAM J. Sci. Comput. 39(6), B1043–B1063 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Hamaidi, M., Naji, A., Charafi, A.: Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng. Anal. Bound. Elem. 67, 152–163 (2016)MathSciNetCrossRef Hamaidi, M., Naji, A., Charafi, A.: Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng. Anal. Bound. Elem. 67, 152–163 (2016)MathSciNetCrossRef
21.
Zurück zum Zitat Haq, S., Siraj-Ul-Islam, Uddin, M.: A mesh-free method for the numerical solution of the KdV-Burgers equation. Appl. Mathe. Model. 33, 3442–3449 (2008)MathSciNetCrossRef Haq, S., Siraj-Ul-Islam, Uddin, M.: A mesh-free method for the numerical solution of the KdV-Burgers equation. Appl. Mathe. Model. 33, 3442–3449 (2008)MathSciNetCrossRef
22.
Zurück zum Zitat Li, Z., Mao, X.Z.: Global multiquadric collocation method for groundwater contaminant source identification. Environ. Model. Softw. 26(12), 1611–1621 (2011)CrossRef Li, Z., Mao, X.Z.: Global multiquadric collocation method for groundwater contaminant source identification. Environ. Model. Softw. 26(12), 1611–1621 (2011)CrossRef
23.
Zurück zum Zitat Li, Z., Mao, X.Z., Li, T.S., Zhang, S.: Estimation of river pollution source using the space-time radial basis collocation method. Adv. Water Resour. 88, 68–79 (2016)CrossRef Li, Z., Mao, X.Z., Li, T.S., Zhang, S.: Estimation of river pollution source using the space-time radial basis collocation method. Adv. Water Resour. 88, 68–79 (2016)CrossRef
24.
Zurück zum Zitat Netuzhylov, H., Zilian, A.: Space-time meshfree collocation method: methodology and application to initial-boundary value problems. Int. J. Numer. Meth. Eng. 80(3), 355–380 (2009)MathSciNetCrossRef Netuzhylov, H., Zilian, A.: Space-time meshfree collocation method: methodology and application to initial-boundary value problems. Int. J. Numer. Meth. Eng. 80(3), 355–380 (2009)MathSciNetCrossRef
25.
Zurück zum Zitat Shan, Y., Shu, C., Lu, Z.: Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary. Comput. Model. Eng. Sci. 25, 99–113 (2008) Shan, Y., Shu, C., Lu, Z.: Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary. Comput. Model. Eng. Sci. 25, 99–113 (2008)
26.
Zurück zum Zitat Uddin, M., Ali, H.: The space-time kernel-based numerical method for Burgers’ equations. Mathematics 6(10), 212 (2018)CrossRef Uddin, M., Ali, H.: The space-time kernel-based numerical method for Burgers’ equations. Mathematics 6(10), 212 (2018)CrossRef
27.
Zurück zum Zitat Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005) Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
28.
Zurück zum Zitat Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99–123 (2006)MathSciNetCrossRef Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99–123 (2006)MathSciNetCrossRef
Metadaten
Titel
Explicit Time Stepping of PDEs with Local Refinement in Space-Time
verfasst von
Dylan Abrahamsen
Bengt Fornberg
Publikationsdatum
16.10.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-01065-3

Weitere Artikel der Ausgabe 3/2019

Journal of Scientific Computing 3/2019 Zur Ausgabe

Premium Partner