Skip to main content
Erschienen in: Journal of Scientific Computing 3/2021

01.09.2021

Spectrum-Free and Meshless Solvers of Parabolic PDEs

verfasst von: Giuseppe Patané

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a novel collocation method with Radial Basis Functions for the solution of the inhomogeneous parabolic equation \((\partial _{t}+\mathcal {L})u(\cdot ,t)=f\) on \(\Omega \subseteq \mathbb {R}^{d}\), with \(\mathcal {L}\) elliptic operator. As original contribution, we rewrite the solution in terms of the exponential operator \(\exp (-t\mathcal {L})\), which is then computed through the Padè-Chebyshev approximation of the 1D Gaussian function. The resulting meshless solver uniformly converges to the ground-truth solution, as the degree of the rational polynomial increases, and is independent of the evaluation of the spectrum of \(\mathcal {L}\) (i.e., spectrum-free), of the discretisation of the temporal derivative, and of user-defined parameters. Since the solution is approximated as a linear combination of Radial Basis Functions, we study the conditions on the generating kernel that guarantee the \(\mathcal {L}\)-differentiability of the meshless solution. In our tests, we compare the proposed meshless and spectrum-free solvers with the meshless spectral eigen-decomposition and the meshless \(\theta \)-method on the heat equation in a transient regime. With respect to these previous works, at small scales the Padè-Chebyshev method has a higher numerical stability and approximation accuracy, which are expressed in terms of the selected degree of the rational polynomial and of the spectral properties of the matrix that discretises the parabolic operator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abrahamsen, D., Fornberg, B.: Explicit time stepping of PDEs with local refinement in space-time. J. Sci. Comput. 81, 1945–1962 (2019)MathSciNetCrossRef Abrahamsen, D., Fornberg, B.: Explicit time stepping of PDEs with local refinement in space-time. J. Sci. Comput. 81, 1945–1962 (2019)MathSciNetCrossRef
2.
Zurück zum Zitat Ahmad, I., Ul Islam, S., Khaliq, A.Q.: Local RBF method for multi-dimensional partial differential equations. Comput. Math. Appl. 74(2), 292–324 (2017)MathSciNetCrossRef Ahmad, I., Ul Islam, S., Khaliq, A.Q.: Local RBF method for multi-dimensional partial differential equations. Comput. Math. Appl. 74(2), 292–324 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Allaire, G., Craig, A.: Numerical Analysis and Optimization. Oxford University Press (2007) Allaire, G., Craig, A.: Numerical Analysis and Optimization. Oxford University Press (2007)
4.
Zurück zum Zitat Amano, K.: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. J. Comput. Appl. Math. 53(3), 353–370 (1994)MathSciNetCrossRef Amano, K.: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. J. Comput. Appl. Math. 53(3), 353–370 (1994)MathSciNetCrossRef
5.
Zurück zum Zitat Barnett, A., Epstein, C.L., Greengard, L., Jiang, S., Wang, J.: Explicit unconditionally stable methods for the heat equation via potential theory. Pure Appl. Anal. 1(4), 709–742 (2019)MathSciNetCrossRef Barnett, A., Epstein, C.L., Greengard, L., Jiang, S., Wang, J.: Explicit unconditionally stable methods for the heat equation via potential theory. Pure Appl. Anal. 1(4), 709–742 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Bayona, V.: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation. J. Sci. Comput. 81, 486–512 (2019)MathSciNetCrossRef Bayona, V.: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation. J. Sci. Comput. 81, 486–512 (2019)MathSciNetCrossRef
7.
Zurück zum Zitat Brezzi, F., Cockburn, B., Marini, L., Sulid, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195(25), 3293–3310 (2006)MathSciNetCrossRef Brezzi, F., Cockburn, B., Marini, L., Sulid, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195(25), 3293–3310 (2006)MathSciNetCrossRef
8.
Zurück zum Zitat Cao, Y., Schultz, W.W., Beck, R.F.: Three-dimensional desingularised boundary integral method for potential problems. Int. J. Numer. Methods Fluids 12, 785–803 (1991)CrossRef Cao, Y., Schultz, W.W., Beck, R.F.: Three-dimensional desingularised boundary integral method for potential problems. Int. J. Numer. Methods Fluids 12, 785–803 (1991)CrossRef
9.
Zurück zum Zitat Carpenter, A., Ruttan, A., Varga, R.: Extended numerical computations on the “1/9” conjecture in rational approximation theory. In: Rational Approximation and Interpolation, Lecture Notes in Mathematics, vol. 1105, pp. 383–411. Springer (1984) Carpenter, A., Ruttan, A., Varga, R.: Extended numerical computations on the “1/9” conjecture in rational approximation theory. In: Rational Approximation and Interpolation, Lecture Notes in Mathematics, vol. 1105, pp. 383–411. Springer (1984)
10.
Zurück zum Zitat Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–22 (2018)MathSciNetCrossRef Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–22 (2018)MathSciNetCrossRef
11.
Zurück zum Zitat Chen, C., Hon, Y., Schaback, R.: Scientific Computation with Radial Basis Functions. University of Southern Missisipi (2007) Chen, C., Hon, Y., Schaback, R.: Scientific Computation with Radial Basis Functions. University of Southern Missisipi (2007)
12.
Zurück zum Zitat Chen, C., Karageorghis, A., Smyrlis, Y.: The Method of Fundamental Solutions—A Meshless Method. Dynamic Publisher (2007) Chen, C., Karageorghis, A., Smyrlis, Y.: The Method of Fundamental Solutions—A Meshless Method. Dynamic Publisher (2007)
13.
Zurück zum Zitat Chen, W., Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43(3), 379–391 (2002)MathSciNetCrossRef Chen, W., Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43(3), 379–391 (2002)MathSciNetCrossRef
14.
Zurück zum Zitat Cody, W.J., Meinardus, G., Varga, R.S.: Chebyshev rational approximations to \(\exp (-z)\) in \((0,+\infty )\) and applications to heat-conduction problems. J. Approx. Theory 2, 50–65 (1969)CrossRef Cody, W.J., Meinardus, G., Varga, R.S.: Chebyshev rational approximations to \(\exp (-z)\) in \((0,+\infty )\) and applications to heat-conduction problems. J. Approx. Theory 2, 50–65 (1969)CrossRef
15.
Zurück zum Zitat Davydov, O., Oanh, D.T.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)MathSciNetCrossRef Davydov, O., Oanh, D.T.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)MathSciNetCrossRef
16.
Zurück zum Zitat Duan, Y.: A note on the meshless method using radial basis functions. Comput. Math. Appl. 55(1), 66–75 (2008)MathSciNetCrossRef Duan, Y.: A note on the meshless method using radial basis functions. Comput. Math. Appl. 55(1), 66–75 (2008)MathSciNetCrossRef
17.
Zurück zum Zitat Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Surface Fitting and Multiresolution Methods, pp. 131–138. University Press (1997) Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Surface Fitting and Multiresolution Methods, pp. 131–138. University Press (1997)
18.
Zurück zum Zitat Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of gaussian RBF interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012) Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of gaussian RBF interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)
19.
Zurück zum Zitat Fedoseyev, A., Friedman, M., Kansa, E.: Improved multi-quadratic method for elliptic partial differential equation via PDE collocation on the boundary. Comput. Math. Appl. (3–5)(43), 439–455 (2003) Fedoseyev, A., Friedman, M., Kansa, E.: Improved multi-quadratic method for elliptic partial differential equation via PDE collocation on the boundary. Comput. Math. Appl. (3–5)(43), 439–455 (2003)
20.
Zurück zum Zitat Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)MathSciNetCrossRef Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)MathSciNetCrossRef
21.
Zurück zum Zitat Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2006)MathSciNetCrossRef Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2006)MathSciNetCrossRef
22.
Zurück zum Zitat Fries, T.P., Belytschko, T.: New Shape Functions for Arbitrary Discontinuities without Additional Unknowns, pp. 87–103. Springer, Berlin (2007)MATH Fries, T.P., Belytschko, T.: New Shape Functions for Arbitrary Discontinuities without Additional Unknowns, pp. 87–103. Springer, Berlin (2007)MATH
23.
Zurück zum Zitat Fu, Z.J., Xi, Q., Chen, W., Cheng, A.H.D.: A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput. Math. Appl. 76(4), 760–773 (2018)MathSciNetCrossRef Fu, Z.J., Xi, Q., Chen, W., Cheng, A.H.D.: A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput. Math. Appl. 76(4), 760–773 (2018)MathSciNetCrossRef
24.
Zurück zum Zitat Golub, G., Van Loan, G.: Matrix Computations, 2nd edn. John Hopkins University Press (1989) Golub, G., Van Loan, G.: Matrix Computations, 2nd edn. John Hopkins University Press (1989)
25.
Zurück zum Zitat Grady, B., Bengt, F.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)MathSciNetCrossRef Grady, B., Bengt, F.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Gu, Y.T., Liu, G.R.: Meshless techniques for convection dominated problems. Comput. Mech. 38(2), 171–182 (2006)MathSciNetCrossRef Gu, Y.T., Liu, G.R.: Meshless techniques for convection dominated problems. Comput. Mech. 38(2), 171–182 (2006)MathSciNetCrossRef
27.
Zurück zum Zitat Haq, S., Hussain, A., Uddin, M.: On the numerical solution of nonlinear Burgers’ type equations using meshless method of lines. Appl. Math. Comput. 218(11), 6280–6290 (2012) Haq, S., Hussain, A., Uddin, M.: On the numerical solution of nonlinear Burgers’ type equations using meshless method of lines. Appl. Math. Comput. 218(11), 6280–6290 (2012)
28.
Zurück zum Zitat Hon, Y., Schaback, R., Zhong, M.: The meshless kernel-based method of lines for parabolic equations. Comput. Math. Appl. 68(12, Part A), 2057 – 2067 (2014) Hon, Y., Schaback, R., Zhong, M.: The meshless kernel-based method of lines for parabolic equations. Comput. Math. Appl. 68(12, Part A), 2057 – 2067 (2014)
29.
Zurück zum Zitat Jing, Z., Chen, J., Li, X.: RBF-ga: an adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis. Reliab. Eng. Syst. Saf. 189, 42–57 (2019)CrossRef Jing, Z., Chen, J., Li, X.: RBF-ga: an adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis. Reliab. Eng. Syst. Saf. 189, 42–57 (2019)CrossRef
30.
Zurück zum Zitat Kansa, E.: Multiquadrics i—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 147–161 (1990)MathSciNetCrossRef Kansa, E.: Multiquadrics i—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 147–161 (1990)MathSciNetCrossRef
31.
Zurück zum Zitat Kansa, E.: Multiquadrics ii—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 127–145 (1990)MathSciNetCrossRef Kansa, E.: Multiquadrics ii—a scattered data approximation scheme with applications to computational fluid-dynamics, surface approximations, and partial derivative estimates. Comput. Math. Appl. 19(8), 127–145 (1990)MathSciNetCrossRef
32.
Zurück zum Zitat Karageorghis, A., Aleksidze, M.: The method of fundamental equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4(4), 82–126 (1964)CrossRef Karageorghis, A., Aleksidze, M.: The method of fundamental equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4(4), 82–126 (1964)CrossRef
33.
Zurück zum Zitat Koopmann, G., Song, L., Fahnline, J.: A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 86(6), 2433–2438 (1989)CrossRef Koopmann, G., Song, L., Fahnline, J.: A method for computing acoustic fields based on the principle of wave superposition. J. Acoust. Soc. Am. 86(6), 2433–2438 (1989)CrossRef
34.
Zurück zum Zitat Milewski, S., Putanowicz, R.: Higher order meshless schemes applied to the finite element method in elliptic problems. Comput. Math. Appl. 77(3), 779–802 (2019)MathSciNetCrossRef Milewski, S., Putanowicz, R.: Higher order meshless schemes applied to the finite element method in elliptic problems. Comput. Math. Appl. 77(3), 779–802 (2019)MathSciNetCrossRef
35.
Zurück zum Zitat Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRef Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRef
36.
Zurück zum Zitat Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the Lanczos method and an \(\cal{O}(m)\)-time spectral algorithm for balanced separator. In: Proc. of the 44th Symposium on Theory of Computing Conference, pp. 1141–1160 (2012) Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the Lanczos method and an \(\cal{O}(m)\)-time spectral algorithm for balanced separator. In: Proc. of the 44th Symposium on Theory of Computing Conference, pp. 1141–1160 (2012)
37.
Zurück zum Zitat Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations, 1st edn. 1994, 2nd printing edn. Springer (2008) Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations, 1st edn. 1994, 2nd printing edn. Springer (2008)
38.
Zurück zum Zitat Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2), 193–210 (1999)MathSciNetCrossRef Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2), 193–210 (1999)MathSciNetCrossRef
39.
Zurück zum Zitat Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)MathSciNetCrossRef Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)MathSciNetCrossRef
40.
Zurück zum Zitat Sanchez, M., Fryazinov, O., Adzhiev, V., Comninos, P., Pasko, A.: Space-time transfinite interpolation of volumetric material properties. IEEE Trans. Vis. Comput. Graph. 21(2), 278–288 (2015)CrossRef Sanchez, M., Fryazinov, O., Adzhiev, V., Comninos, P., Pasko, A.: Space-time transfinite interpolation of volumetric material properties. IEEE Trans. Vis. Comput. Graph. 21(2), 278–288 (2015)CrossRef
41.
Zurück zum Zitat Schaback, R.: A practical guide to radial basis functions. Tech. Rep., University of Goettingen (2007) Schaback, R.: A practical guide to radial basis functions. Tech. Rep., University of Goettingen (2007)
42.
Zurück zum Zitat Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)CrossRef Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)CrossRef
43.
Zurück zum Zitat Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [d5]. Commun. ACM 13(1), 47–49 (1970)CrossRef Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [d5]. Commun. ACM 13(1), 47–49 (1970)CrossRef
44.
Zurück zum Zitat Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Siggraph 21(4), 855–873 (2002) Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Siggraph 21(4), 855–873 (2002)
45.
Zurück zum Zitat Uddin, M.: RBF-PS scheme for solving the equal width equation. Appl. Math. Comput. 222, 619–631 (2013)MathSciNetMATH Uddin, M.: RBF-PS scheme for solving the equal width equation. Appl. Math. Comput. 222, 619–631 (2013)MathSciNetMATH
46.
Zurück zum Zitat Varga, R.: Scientific computation on mathematical problems and conjectures. In: SIAM, CBMS-NSF Regional Conference Series in Applied Mathematics (1990) Varga, R.: Scientific computation on mathematical problems and conjectures. In: SIAM, CBMS-NSF Regional Conference Series in Applied Mathematics (1990)
47.
Zurück zum Zitat Wendland, H.: Real piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)MathSciNetCrossRef Wendland, H.: Real piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)MathSciNetCrossRef
48.
Zurück zum Zitat Yun, D., Hon, Y.: Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng. Anal. Bound. Elem. 67, 63–80 (2016)MathSciNetCrossRef Yun, D., Hon, Y.: Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng. Anal. Bound. Elem. 67, 63–80 (2016)MathSciNetCrossRef
49.
Zurück zum Zitat Zamolo, R., Nobile, E.: Two algorithms for fast 2D node generation: application to RBF meshless discretization of diffusion problems and image halftoning. Comput. Math. Appl. 75(12), 4305–4321 (2018)MathSciNetCrossRef Zamolo, R., Nobile, E.: Two algorithms for fast 2D node generation: application to RBF meshless discretization of diffusion problems and image halftoning. Comput. Math. Appl. 75(12), 4305–4321 (2018)MathSciNetCrossRef
Metadaten
Titel
Spectrum-Free and Meshless Solvers of Parabolic PDEs
verfasst von
Giuseppe Patané
Publikationsdatum
01.09.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01604-x

Weitere Artikel der Ausgabe 3/2021

Journal of Scientific Computing 3/2021 Zur Ausgabe

Premium Partner