Skip to main content
Erschienen in: Journal of Polymer Research 2/2012

01.02.2012 | Original Paper

Enhanced shape memory effect of poly(L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs

verfasst von: Maryam Amirian, Ali Nabipour Chakoli, Jiehe Sui, Wei Cai

Erschienen in: Journal of Polymer Research | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data from comprehensive thermomechanical tests of poly(L-lactide-co-ε-caprolactone) biodegradable shape memory polymer (SMP) reinforced with pristine and functionalized multiwalled carbon nanotubes (MWCNTs) are reported. The SMP specimens tested up to 500% strain and between 25 °C and 70 °C temperatures. The incorporation of functionalized MWCNTs leads to the best overall reinforcing effect in tensile modulus, yield stress, tensile strength and elongation at failure. Thermo mechanical experiments resulted that the functionalized MWCNTs increased the glass transition range of composites and changed the melting point of composites slightly. The crystallinity of composites was increased with increment of MWCNTs in composites. The shape fixity and shape recovery of composites increased slightly, while the recovery stress increased 46%. It is found that the functionalized MWCNTs prepare an effective physical cross linking and switching segments in polymer composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Engin Mater 4:91–104CrossRef Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Engin Mater 4:91–104CrossRef
2.
Zurück zum Zitat Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef
3.
Zurück zum Zitat Lendlein A, Kelch S (2002) Shape memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef Lendlein A, Kelch S (2002) Shape memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef
4.
Zurück zum Zitat Nagata M, Sato Y (2005) Synthesis and properties of photocurable biodegradable multiblock copolymers based on PCL and PLLA segments. J Polym Sci Part A Polym Chem 43:2426–2439CrossRef Nagata M, Sato Y (2005) Synthesis and properties of photocurable biodegradable multiblock copolymers based on PCL and PLLA segments. J Polym Sci Part A Polym Chem 43:2426–2439CrossRef
5.
Zurück zum Zitat Min CC, Cui WJ, Bei JZ, Wang SG (2005) Biodegradable shape memory polymer PLLA-PEG-co-PCL multiblock copolymer. Polym Adv Tech 16:608–615CrossRef Min CC, Cui WJ, Bei JZ, Wang SG (2005) Biodegradable shape memory polymer PLLA-PEG-co-PCL multiblock copolymer. Polym Adv Tech 16:608–615CrossRef
6.
Zurück zum Zitat Cohn D, Lando G, Sosnik A, Garty S, Levi A (2006) Novel degradable reverse thermoresponsive multiblock copolymers. Biomaterials 27:1718–1727CrossRef Cohn D, Lando G, Sosnik A, Garty S, Levi A (2006) Novel degradable reverse thermoresponsive multiblock copolymers. Biomaterials 27:1718–1727CrossRef
7.
Zurück zum Zitat Pensec S, Leroy M, Akkouche H, Spassky N (2000) Stereocomplex formation in enantiomeric diblock and triblock copolymers of PCL and PLLA. Polym Bull 45:373–380CrossRef Pensec S, Leroy M, Akkouche H, Spassky N (2000) Stereocomplex formation in enantiomeric diblock and triblock copolymers of PCL and PLLA. Polym Bull 45:373–380CrossRef
8.
Zurück zum Zitat Jeon O, Lee SH, Kim SH, Lee YM, Kim YH (2003) Synthesis and characterization of PLLA-PCL multiblock copolymers. Macromolecules 36:5585–5592CrossRef Jeon O, Lee SH, Kim SH, Lee YM, Kim YH (2003) Synthesis and characterization of PLLA-PCL multiblock copolymers. Macromolecules 36:5585–5592CrossRef
9.
Zurück zum Zitat Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of PLLA and its copolymer with PCL. Polym Bull 58:381–391CrossRef Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of PLLA and its copolymer with PCL. Polym Bull 58:381–391CrossRef
10.
Zurück zum Zitat Dunnen WFA, Schakenraad JM, Zondervan GJ, Pennings AJ, Lei B, Robinson PH (1993) A new PLLA/PCL for nerve regeneration. J Mater Sci Mater Med 4:521–525CrossRef Dunnen WFA, Schakenraad JM, Zondervan GJ, Pennings AJ, Lei B, Robinson PH (1993) A new PLLA/PCL for nerve regeneration. J Mater Sci Mater Med 4:521–525CrossRef
11.
Zurück zum Zitat Kricheldorf HR, Saunders IK, Stricker A (2000) Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromol 33:702–709CrossRef Kricheldorf HR, Saunders IK, Stricker A (2000) Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromol 33:702–709CrossRef
12.
Zurück zum Zitat Pantiru M, Iojoiu C, Hamaide T, Delolme F (2004) Influence of the chemical structure of transfer agents in coordinated anionic ring-opening polymerization: application to one-step functional oligomerization of ε-caprolactone. Polym Int 53:506–514CrossRef Pantiru M, Iojoiu C, Hamaide T, Delolme F (2004) Influence of the chemical structure of transfer agents in coordinated anionic ring-opening polymerization: application to one-step functional oligomerization of ε-caprolactone. Polym Int 53:506–514CrossRef
13.
Zurück zum Zitat Báez JE, Fernández ÁM, Iranzo PG (2011) Exploring the effect of alkyl end group on poly(L-lactide) oligo-esters. Synthesis and characterization. J Polym Res 18:1137–1146CrossRef Báez JE, Fernández ÁM, Iranzo PG (2011) Exploring the effect of alkyl end group on poly(L-lactide) oligo-esters. Synthesis and characterization. J Polym Res 18:1137–1146CrossRef
14.
Zurück zum Zitat Hu X, Xu JZ, Zhong GJ, Luo XL, Li ZM (2011) Shear induced crystallization of poly(L-lactide) and poly(ethylene glycol) (PLLA-PEG-PLLA) copolymers with different block length. J Polym Res 18:675–680CrossRef Hu X, Xu JZ, Zhong GJ, Luo XL, Li ZM (2011) Shear induced crystallization of poly(L-lactide) and poly(ethylene glycol) (PLLA-PEG-PLLA) copolymers with different block length. J Polym Res 18:675–680CrossRef
15.
Zurück zum Zitat Wu D, Wu L, Sun Y, Zhang M (2007) Viscoelasticity and thermal stability of PLLA composites with various functionalized CNTs. J Polym Sci Part B Polym Phys 45:3137–3147CrossRef Wu D, Wu L, Sun Y, Zhang M (2007) Viscoelasticity and thermal stability of PLLA composites with various functionalized CNTs. J Polym Sci Part B Polym Phys 45:3137–3147CrossRef
16.
Zurück zum Zitat Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of MWCNTs in PCL/PLLA blend. Biomacromol 10:417–424CrossRef Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of MWCNTs in PCL/PLLA blend. Biomacromol 10:417–424CrossRef
17.
Zurück zum Zitat Chen GX, Kim HS, Park BH, Yoon JS (2007) Synthesis of PLLA-functionalized MWCNTs by ring-opening polymerization. Macromol Chem Phys 208:389–398CrossRef Chen GX, Kim HS, Park BH, Yoon JS (2007) Synthesis of PLLA-functionalized MWCNTs by ring-opening polymerization. Macromol Chem Phys 208:389–398CrossRef
18.
Zurück zum Zitat Kim HS, Park BH, Yoon JS, Jin HJ (2007) Thermal and electrical properties of PLLA/MWCNT composites. Eur Polym J 43:1729–1735CrossRef Kim HS, Park BH, Yoon JS, Jin HJ (2007) Thermal and electrical properties of PLLA/MWCNT composites. Eur Polym J 43:1729–1735CrossRef
19.
Zurück zum Zitat Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of CNT/PCL nanocomposite. Polymer 47:8019–8025CrossRef Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of CNT/PCL nanocomposite. Polymer 47:8019–8025CrossRef
20.
Zurück zum Zitat Chen GX, Shimizu H (2008) MWCNT grafted with polyhedral oligomeric silsesquioxane and its dispersion in PCL matrix. Polymer 49:943–951CrossRef Chen GX, Shimizu H (2008) MWCNT grafted with polyhedral oligomeric silsesquioxane and its dispersion in PCL matrix. Polymer 49:943–951CrossRef
21.
Zurück zum Zitat Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269CrossRef Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269CrossRef
22.
Zurück zum Zitat Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Materialia 50:5115–5126CrossRef Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Materialia 50:5115–5126CrossRef
23.
Zurück zum Zitat Ni QQ, Zhang CS, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of CNT/SMP nanocomposites. Compos Struct 81:176–184CrossRef Ni QQ, Zhang CS, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of CNT/SMP nanocomposites. Compos Struct 81:176–184CrossRef
24.
Zurück zum Zitat Meng Q, Hu J, Zhu Y (2007) Shape memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci 106:837–848CrossRef Meng Q, Hu J, Zhu Y (2007) Shape memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci 106:837–848CrossRef
25.
Zurück zum Zitat Meng Q, Hu J, Yeung L (2007) An electro-active shape memory fiber by incorporating multi-walled carbon nanotubes. Smart Mater Struct 16:830–836CrossRef Meng Q, Hu J, Yeung L (2007) An electro-active shape memory fiber by incorporating multi-walled carbon nanotubes. Smart Mater Struct 16:830–836CrossRef
26.
Zurück zum Zitat Meng Q, Hu J (2008) Study on PCL based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polym Adv Technol 19:131–136CrossRef Meng Q, Hu J (2008) Study on PCL based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polym Adv Technol 19:131–136CrossRef
27.
Zurück zum Zitat Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295CrossRef Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295CrossRef
28.
Zurück zum Zitat Feng JT, Cai W, Sui JH, Li ZG, Wan JQ, Nabipour Chakoli A (2008) PLLA brushes on m-MWCNTs by in-situ ring-opening polymerization. Polymer 49:4989–94CrossRef Feng JT, Cai W, Sui JH, Li ZG, Wan JQ, Nabipour Chakoli A (2008) PLLA brushes on m-MWCNTs by in-situ ring-opening polymerization. Polymer 49:4989–94CrossRef
29.
Zurück zum Zitat Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of MWCNTs for reinforcing of PCLA biodegradable copolymers. Appl Surf Sci 256:170–177CrossRef Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of MWCNTs for reinforcing of PCLA biodegradable copolymers. Appl Surf Sci 256:170–177CrossRef
30.
Zurück zum Zitat Nabipour Chakoli A, Sui J, Amirian M, Cai W Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes. J Polym Res. doi:10.1007/s10965-010-9527-9 Nabipour Chakoli A, Sui J, Amirian M, Cai W Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes. J Polym Res. doi:10.​1007/​s10965-010-9527-9
31.
Zurück zum Zitat Behl M, Lendlein A (2009) Shape memory polymers. Materials Today 10:20–28CrossRef Behl M, Lendlein A (2009) Shape memory polymers. Materials Today 10:20–28CrossRef
32.
Zurück zum Zitat Atli B, Gandhi F, Karst G (2009) Thermo mechanical characterization of shape memory polymers. J Intl Mat Syst Str 20:87–95CrossRef Atli B, Gandhi F, Karst G (2009) Thermo mechanical characterization of shape memory polymers. J Intl Mat Syst Str 20:87–95CrossRef
33.
Zurück zum Zitat Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18:859–867CrossRef Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18:859–867CrossRef
34.
Zurück zum Zitat Schmidt C, Chowdhury S, Neuking K, Eggeler G Thermo-mechanical behaviour of shape memory polymers, e.g., Tecoflex® by 1WE method: SEM and IR analysis. J Polym Res. doi:10.1007/s10965-011-9587-5 Schmidt C, Chowdhury S, Neuking K, Eggeler G Thermo-mechanical behaviour of shape memory polymers, e.g., Tecoflex® by 1WE method: SEM and IR analysis. J Polym Res. doi:10.​1007/​s10965-011-9587-5
35.
Zurück zum Zitat Liu G, He W, Peng Y, Xia H Shape-memory behavior of poly (methyl methacrylate-co –N-vinyl-2-pyrrolidone)/poly (ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J Polym Res. doi:10.1007/s10965-011-9621-7 Liu G, He W, Peng Y, Xia H Shape-memory behavior of poly (methyl methacrylate-co –N-vinyl-2-pyrrolidone)/poly (ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J Polym Res. doi:10.​1007/​s10965-011-9621-7
36.
Zurück zum Zitat Wang LS, Chen HC, Zhang LF, Chen DL, Pang XB, Xiong CD Biodegradable thermoplastic elastomer comprising PLLCA and CaCO3 whiskers: mechanical properties, thermal stability and shape memory properties. J Polym Res. doi:10.1007/s10965-010-9422-4 Wang LS, Chen HC, Zhang LF, Chen DL, Pang XB, Xiong CD Biodegradable thermoplastic elastomer comprising PLLCA and CaCO3 whiskers: mechanical properties, thermal stability and shape memory properties. J Polym Res. doi:10.​1007/​s10965-010-9422-4
37.
Zurück zum Zitat Liu Y, Gall K, Dunn ML, Cluskey PM (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36:929–940CrossRef Liu Y, Gall K, Dunn ML, Cluskey PM (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36:929–940CrossRef
38.
Zurück zum Zitat Miyata T, Masuko T (1997) Morphology of PLLA solution grown crystals. Polymer 38:4003–4009CrossRef Miyata T, Masuko T (1997) Morphology of PLLA solution grown crystals. Polymer 38:4003–4009CrossRef
39.
Zurück zum Zitat Jeong SI, Kim BS, Lee YM, Ihn KJ, Kim SH, Kim YH (2004) Morphology of elastic poly(l-lactide-co-ε-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 5:1303–1309CrossRef Jeong SI, Kim BS, Lee YM, Ihn KJ, Kim SH, Kim YH (2004) Morphology of elastic poly(l-lactide-co-ε-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 5:1303–1309CrossRef
40.
Zurück zum Zitat Lu XL, Sun Z, Cai W (2007) Structure and shape memory effects of poly(L-lactide) and its copolymers. Phys Scr T129:231–235CrossRef Lu XL, Sun Z, Cai W (2007) Structure and shape memory effects of poly(L-lactide) and its copolymers. Phys Scr T129:231–235CrossRef
41.
Zurück zum Zitat Meng Q, Hu J (2007) Study on poly(e-caprolactone)-based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polym Adv Technol. doi:10.1002/pat.985 Meng Q, Hu J (2007) Study on poly(e-caprolactone)-based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polym Adv Technol. doi:10.​1002/​pat.​985
42.
Zurück zum Zitat Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink AA (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131CrossRef Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink AA (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131CrossRef
43.
Zurück zum Zitat Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14 Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14
Metadaten
Titel
Enhanced shape memory effect of poly(L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs
verfasst von
Maryam Amirian
Ali Nabipour Chakoli
Jiehe Sui
Wei Cai
Publikationsdatum
01.02.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 2/2012
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-011-9777-1

Weitere Artikel der Ausgabe 2/2012

Journal of Polymer Research 2/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.