Skip to main content
Erschienen in: Journal of Polymer Research 12/2014

01.12.2014 | Original Paper

Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives

verfasst von: Ahmed M. El-Hadi, Saeed D. Mohan, Fred J. Davis, Geoffrey R. Mitchell

Erschienen in: Journal of Polymer Research | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Greiner A, Wendorff JH, Electrospinning (2007) A Fascinating Method for the Preparation of Ultrathin Fibers. Angew Chem Int Ed 46:5670–5703CrossRef Greiner A, Wendorff JH, Electrospinning (2007) A Fascinating Method for the Preparation of Ultrathin Fibers. Angew Chem Int Ed 46:5670–5703CrossRef
2.
Zurück zum Zitat Ramakrishna S, Kazutoshi F, Teo WE, Lim TC, Ma Z (2005) An introduction to nanofibers. World Scientific Co., Pte. Ltd., Singapore Ramakrishna S, Kazutoshi F, Teo WE, Lim TC, Ma Z (2005) An introduction to nanofibers. World Scientific Co., Pte. Ltd., Singapore
3.
Zurück zum Zitat Reneker DH, Fong H (2006) Polymeric nanofibers. In: ACS symposium series 918.Washington, DC: American Chemical Society Reneker DH, Fong H (2006) Polymeric nanofibers. In: ACS symposium series 918.Washington, DC: American Chemical Society
4.
Zurück zum Zitat Fong H, Reneker DH (2000) Electrospinning and the formation of nanofibers. In: Salem DR (ed) Structure formation in polymeric fibers. Hanser, Munich, pp 225–289 Fong H, Reneker DH (2000) Electrospinning and the formation of nanofibers. In: Salem DR (ed) Structure formation in polymeric fibers. Hanser, Munich, pp 225–289
5.
Zurück zum Zitat Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4415CrossRef Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4415CrossRef
6.
Zurück zum Zitat Formhals A (1934) Process and apparatus for preparing artificial threads, US patent 1975504 Formhals A (1934) Process and apparatus for preparing artificial threads, US patent 1975504
7.
Zurück zum Zitat Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanoparticle Res 8:769–781CrossRef Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanoparticle Res 8:769–781CrossRef
8.
Zurück zum Zitat Buschle-Diller G, Hawkins A, Copper J (2006) Electrospun nanofibers from biopolymers and their biomedical applications. In: Edwards JV, Buschle-Diller G, Goheen SC (eds) ‘Modified Fibers with Medical and Specialty Applications’. Springer, Berlin, pp 67–89CrossRef Buschle-Diller G, Hawkins A, Copper J (2006) Electrospun nanofibers from biopolymers and their biomedical applications. In: Edwards JV, Buschle-Diller G, Goheen SC (eds) ‘Modified Fibers with Medical and Specialty Applications’. Springer, Berlin, pp 67–89CrossRef
9.
Zurück zum Zitat Chen J, Chang GY, Chen JK (2008) Colloids and Surfaces A: Physicochemical and Engineering Aspects. 313–314: 183–188. Electrospun collagen/chitosan nanofibrous membrane as wound dressing Chen J, Chang GY, Chen JK (2008) Colloids and Surfaces A: Physicochemical and Engineering Aspects. 313–314: 183–188. Electrospun collagen/chitosan nanofibrous membrane as wound dressing
10.
Zurück zum Zitat Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610CrossRef Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610CrossRef
11.
Zurück zum Zitat Wang X, Drew C, Lee S-H, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Lett 2:1273–3CrossRef Wang X, Drew C, Lee S-H, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Lett 2:1273–3CrossRef
12.
Zurück zum Zitat Wang M, Singh H, Hatton TA, Rutledge GC (2004) Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45:5505–5509CrossRef Wang M, Singh H, Hatton TA, Rutledge GC (2004) Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45:5505–5509CrossRef
13.
Zurück zum Zitat Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45:190–195CrossRef Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45:190–195CrossRef
14.
Zurück zum Zitat Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nano fibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886CrossRef Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nano fibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886CrossRef
15.
Zurück zum Zitat El-Hadi AM (2011) The Effect of Annealing Treatments on Spherulitic Morphology and Physical Ageing on Glass Transition of Poly Lactic Acid (PLLA). Mater Sci Appl 2:439–5 El-Hadi AM (2011) The Effect of Annealing Treatments on Spherulitic Morphology and Physical Ageing on Glass Transition of Poly Lactic Acid (PLLA). Mater Sci Appl 2:439–5
16.
Zurück zum Zitat Nurkhamidah S, Woo EM (2012) Correlation of Crack Patterns and Ring Bands in Spherulites of Highly Crystalline Poly(L-lactic acid. Collied Polym Sci 290:275–288CrossRef Nurkhamidah S, Woo EM (2012) Correlation of Crack Patterns and Ring Bands in Spherulites of Highly Crystalline Poly(L-lactic acid. Collied Polym Sci 290:275–288CrossRef
17.
Zurück zum Zitat Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurenin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurenin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29:4100–4107CrossRef
18.
Zurück zum Zitat Bognitzki M, Czado W, Frese, T A (2001) Schaper, Hellwig M, Steinhart M, Greiner A, Wendorff JH, Nanostructured fibers via electrospinning, Adv Mater 13 :70–2 Bognitzki M, Czado W, Frese, T A (2001) Schaper, Hellwig M, Steinhart M, Greiner A, Wendorff JH, Nanostructured fibers via electrospinning, Adv Mater 13 :70–2
19.
Zurück zum Zitat Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2089CrossRef Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2089CrossRef
20.
Zurück zum Zitat Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72CrossRef Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72CrossRef
21.
Zurück zum Zitat Patra SN, Easteal AJ, Bhattacharyya D (2009) Parametric study of manufacturing Poly(lactic) acid nanofibrous mat by electrspinning. J Mater Sci 44:647–654CrossRef Patra SN, Easteal AJ, Bhattacharyya D (2009) Parametric study of manufacturing Poly(lactic) acid nanofibrous mat by electrspinning. J Mater Sci 44:647–654CrossRef
22.
Zurück zum Zitat Edwards MD, Mitchell GR, Mohan SD, Olley RH (2010) Development of orientation during electrospinning of fibres of poly(epsilon- caprolactone). Eur Polym J 46:1175–1183CrossRef Edwards MD, Mitchell GR, Mohan SD, Olley RH (2010) Development of orientation during electrospinning of fibres of poly(epsilon- caprolactone). Eur Polym J 46:1175–1183CrossRef
23.
Zurück zum Zitat Sombatmankhong K, Suwantong O, Supaphol P (2006) Electrospun Fiber Mats of Poly(3-Hydroxybutyrate), Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate), and Their Blends. J Polym Sci B 44:2923–2933CrossRef Sombatmankhong K, Suwantong O, Supaphol P (2006) Electrospun Fiber Mats of Poly(3-Hydroxybutyrate), Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate), and Their Blends. J Polym Sci B 44:2923–2933CrossRef
24.
Zurück zum Zitat El-hadi AM (2014) Development of novel biopolymer blends based on poly(L-lactic acid ) (PLLA), poly((R)-3-hydroxybutyrate) (PHB) and plasticizer. Polym Eng Sci 54:1394–1402CrossRef El-hadi AM (2014) Development of novel biopolymer blends based on poly(L-lactic acid ) (PLLA), poly((R)-3-hydroxybutyrate) (PHB) and plasticizer. Polym Eng Sci 54:1394–1402CrossRef
25.
Zurück zum Zitat Mohan SD, Mitchell GR, Davis FJ (2011) Chain extension in electrospun polystyrene fibres: a SANS study. Soft Matter 7:4397–4404CrossRef Mohan SD, Mitchell GR, Davis FJ (2011) Chain extension in electrospun polystyrene fibres: a SANS study. Soft Matter 7:4397–4404CrossRef
26.
Zurück zum Zitat Koombhongse S, Liu W, Reneker DH (2001) Flat Polymer Ribbons and Other Shapes by Electrospinning. J Polym Sci, Part B:Polym Phy 39:2598–2606CrossRef Koombhongse S, Liu W, Reneker DH (2001) Flat Polymer Ribbons and Other Shapes by Electrospinning. J Polym Sci, Part B:Polym Phy 39:2598–2606CrossRef
27.
Zurück zum Zitat Reneker DH, Yarin AL (2008) Electrospinning Jets and Polymer Nanofibers. Polymer 49:2387–2425CrossRef Reneker DH, Yarin AL (2008) Electrospinning Jets and Polymer Nanofibers. Polymer 49:2387–2425CrossRef
28.
Zurück zum Zitat Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 35:8456–8465CrossRef Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 35:8456–8465CrossRef
29.
Zurück zum Zitat Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co3- hydroxyvalerate). Macromolecules 37:573–578CrossRef Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co3- hydroxyvalerate). Macromolecules 37:573–578CrossRef
30.
Zurück zum Zitat Medeiros ES, Mattoso LHC, Offeman RD, Wood DF, Orts WJ (2008) Effect of relative humidity on the morphology of electrospun polymer fibers. Can J Chem-Revue Canadienne De Chimie 86:590–599CrossRef Medeiros ES, Mattoso LHC, Offeman RD, Wood DF, Orts WJ (2008) Effect of relative humidity on the morphology of electrospun polymer fibers. Can J Chem-Revue Canadienne De Chimie 86:590–599CrossRef
31.
Zurück zum Zitat Bloembergen S, Holden DA (1986) Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871CrossRef Bloembergen S, Holden DA (1986) Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871CrossRef
32.
Zurück zum Zitat Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy, Spectrochim. Acta Part A 61:541–550CrossRef Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy, Spectrochim. Acta Part A 61:541–550CrossRef
33.
Zurück zum Zitat Bayar S, Severcan F (2005) FTIR study of biodegradable biopolymers: P (3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct 744–747:529–5CrossRef Bayar S, Severcan F (2005) FTIR study of biodegradable biopolymers: P (3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct 744–747:529–5CrossRef
34.
Zurück zum Zitat Krikorian V, Pochan DJ (2005) Crystallization Behavior of Poly (L-lactic acid) Nanocomposites:Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 38:6520–6527CrossRef Krikorian V, Pochan DJ (2005) Crystallization Behavior of Poly (L-lactic acid) Nanocomposites:Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 38:6520–6527CrossRef
35.
Zurück zum Zitat Furukawa T, Sato H, Murakami R, Zhang J, Duan YX, Noda I, Ochiai S, Ozaki Y (2005) Structure, Dispersibility, and Crystallinity of Poly (hydroxybutyrate)/ Poly (L-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules 38:6445–6454CrossRef Furukawa T, Sato H, Murakami R, Zhang J, Duan YX, Noda I, Ochiai S, Ozaki Y (2005) Structure, Dispersibility, and Crystallinity of Poly (hydroxybutyrate)/ Poly (L-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules 38:6445–6454CrossRef
36.
Zurück zum Zitat Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–77CrossRef Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–77CrossRef
37.
Zurück zum Zitat Saito M, Inoue Y, Yoshie N (2001) Cocrystallization and phase segregation of blend of poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 42:5573–5580CrossRef Saito M, Inoue Y, Yoshie N (2001) Cocrystallization and phase segregation of blend of poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 42:5573–5580CrossRef
38.
Zurück zum Zitat Kim ES, Kim SH, Lee CH (2010) Electrospinning of polylactide fibers containing silver nanoparticles. Macromol Res 18:215–216CrossRef Kim ES, Kim SH, Lee CH (2010) Electrospinning of polylactide fibers containing silver nanoparticles. Macromol Res 18:215–216CrossRef
39.
Zurück zum Zitat Channuan W, Siripitayananon J, Molloy R, Sriyai M, Davis FJ, Mitchell GR (2005) The structure of crystallisable copolymers of L-lactide, ε-caprolactone and glycolide. Polymer 46:6411–6417CrossRef Channuan W, Siripitayananon J, Molloy R, Sriyai M, Davis FJ, Mitchell GR (2005) The structure of crystallisable copolymers of L-lactide, ε-caprolactone and glycolide. Polymer 46:6411–6417CrossRef
40.
Zurück zum Zitat Hu Y, Sato H, Zhang J, Noda I, Ozaki Y (2008) Crystallization behavior of poly(L-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer 49:4204–4210CrossRef Hu Y, Sato H, Zhang J, Noda I, Ozaki Y (2008) Crystallization behavior of poly(L-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer 49:4204–4210CrossRef
41.
Zurück zum Zitat El-Hadi AM (2011) Effect of processing conditions on the development of morphological features of banded or nonbanded spherulites of poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLLA) blends. Polym Eng Sci 51:2191–2202CrossRef El-Hadi AM (2011) Effect of processing conditions on the development of morphological features of banded or nonbanded spherulites of poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLLA) blends. Polym Eng Sci 51:2191–2202CrossRef
42.
Zurück zum Zitat Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-lactide) Fibers. Macromolecules 23:634–652CrossRef Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-lactide) Fibers. Macromolecules 23:634–652CrossRef
43.
Zurück zum Zitat Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B (2000) The frustrated structure of poly(l-lactide). Polymer 41:8921–8930CrossRef Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B (2000) The frustrated structure of poly(l-lactide). Polymer 41:8921–8930CrossRef
44.
Zurück zum Zitat Sawai D, Takahashi K, Imamura T, Nakamura K, Kanamoto T, Hyon SH (2002) Preparation of oriented β-form poly(l-lactic acid) by solid-state extrusion. J Polym Sci Part B: Polym Phy 40:95–104CrossRef Sawai D, Takahashi K, Imamura T, Nakamura K, Kanamoto T, Hyon SH (2002) Preparation of oriented β-form poly(l-lactic acid) by solid-state extrusion. J Polym Sci Part B: Polym Phy 40:95–104CrossRef
Metadaten
Titel
Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives
verfasst von
Ahmed M. El-Hadi
Saeed D. Mohan
Fred J. Davis
Geoffrey R. Mitchell
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-014-0605-2

Weitere Artikel der Ausgabe 12/2014

Journal of Polymer Research 12/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.