Skip to main content
Erschienen in: Journal of Polymer Research 6/2017

01.05.2017 | ORIGINAL PAPER

A pH-triggered charge reversal and self-fluorescent micelle as a smart nanocarrier for doxorubicin controlled release

verfasst von: Shan Xia, Yang Gao, Zhe Yu, Lijie Duan, Guang Hui Gao

Erschienen in: Journal of Polymer Research | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel pH-sensitive charge reversal and self-fluorescent polymeric micelle is designed and synthesized successfully. The smart micelle is prepared based on MPEG-polyurethane multi-block copolymer, which is synthesized by polycondensation, with 1, 4-bis (hydroxyethyl) piperazine (HEP) and hydroxyl-sulfamethazine (Hydroxyl-SM) as pH-sensitive molecules and fluorescein isothiocyanate (FITC) as fluorescent segment. The resulting MPEG-polyurethane multi-block copolymer is examined by 1H–NMR, UV-vis spectra, fluorescence spectra and an acid-base titration. Moreover, the diameter, morphology and cytotoxicity of obtained polymer micelle are measured by dynamic light scattering (DLS), transmission electron microscopy (TEM) and MTT assay. The results indicate that the micelle has a small diameter of less than 200 nm and can remain unchanged within two weeks. Zeta-potential measurement shows that the negative charge of micelle can switch into positive charge as the pH value decreasing from 9.0 to 3.0. Subsequently, the fluorescence intensity decreases significantly with the reducing of pH values. The MTT assay shows the low cytotoxicity and good biocompatibility of the MPEG-polyurethane polymeric micelles. Finally, doxorubicin (DOX) is loaded into micelles to detect in vitro release behavior. The drug loaded micelles show a faster release behavior at pH 5.0 than that at pH 7.4. Therefore, the pH-sensitive charge reversal and self-fluorescent micelle can be a potential smart carrier for delivery and controlled release of protein drug.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rengaswamy V, Zimmer D, Süss R, Rössler J (2016) RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. J Control Release 235:319–327CrossRef Rengaswamy V, Zimmer D, Süss R, Rössler J (2016) RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. J Control Release 235:319–327CrossRef
2.
Zurück zum Zitat Nakamura H, Abu Lila AS, Nishio M, et al (2015) Intra-tumor distribution of PEGylated liposome upon repeated injection: no possession by prior dose. J Control Release 220:406–413CrossRef Nakamura H, Abu Lila AS, Nishio M, et al (2015) Intra-tumor distribution of PEGylated liposome upon repeated injection: no possession by prior dose. J Control Release 220:406–413CrossRef
3.
Zurück zum Zitat Assanhou AG, Li W, Zhang L, et al (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–295CrossRef Assanhou AG, Li W, Zhang L, et al (2015) Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 73:284–295CrossRef
4.
Zurück zum Zitat Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–32CrossRef Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–32CrossRef
5.
Zurück zum Zitat Huang K, Shi B, Xu W, et al (2015) Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater 27:179–193CrossRef Huang K, Shi B, Xu W, et al (2015) Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater 27:179–193CrossRef
6.
Zurück zum Zitat Llacua A, de Haan BJ, Smink SA, de Vos P (2016) Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes: Extracellar matrix components. J Biomed Mater Res A 104:1788–1796CrossRef Llacua A, de Haan BJ, Smink SA, de Vos P (2016) Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes: Extracellar matrix components. J Biomed Mater Res A 104:1788–1796CrossRef
7.
Zurück zum Zitat Ye C, Combs ZA, Calabrese R, et al (2014) Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide. Small 10:5087–5097 Ye C, Combs ZA, Calabrese R, et al (2014) Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide. Small 10:5087–5097
8.
Zurück zum Zitat Pavlov AM, De Geest BG, Louage B, et al (2013) Magnetically engineered microcapsules as intracellular anchors for remote control over cellular mobility. Adv Mater 25:6945–6950CrossRef Pavlov AM, De Geest BG, Louage B, et al (2013) Magnetically engineered microcapsules as intracellular anchors for remote control over cellular mobility. Adv Mater 25:6945–6950CrossRef
9.
Zurück zum Zitat Liu F, Kozlovskaya V, Medipelli S, et al (2015) Temperature-sensitive Polymersomes for controlled delivery of anticancer drugs. Chem Mater 27:7945–7956CrossRef Liu F, Kozlovskaya V, Medipelli S, et al (2015) Temperature-sensitive Polymersomes for controlled delivery of anticancer drugs. Chem Mater 27:7945–7956CrossRef
10.
Zurück zum Zitat Curcio M, Cirillo G, Vittorio O, et al (2015) Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. Eur Polym J 67:304–313CrossRef Curcio M, Cirillo G, Vittorio O, et al (2015) Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. Eur Polym J 67:304–313CrossRef
11.
Zurück zum Zitat Li H, Fu Y, Zhang T, et al (2015) Rational Design of Polymeric Hybrid Micelles with highly tunable properties to co-deliver MicroRNA-34a and Vismodegib for melanoma therapy. Adv Funct Mater 25:7457–7469CrossRef Li H, Fu Y, Zhang T, et al (2015) Rational Design of Polymeric Hybrid Micelles with highly tunable properties to co-deliver MicroRNA-34a and Vismodegib for melanoma therapy. Adv Funct Mater 25:7457–7469CrossRef
12.
Zurück zum Zitat Li W, Zheng C, Pan Z, et al (2016) Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials 101:10–19CrossRef Li W, Zheng C, Pan Z, et al (2016) Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials 101:10–19CrossRef
13.
Zurück zum Zitat Bao Y, Yin M, Hu X, et al (2016) A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 235:182–194CrossRef Bao Y, Yin M, Hu X, et al (2016) A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 235:182–194CrossRef
14.
Zurück zum Zitat Zhang Y, Wang C, Huang Y, et al (2015) Core-crosslinked polymeric micelles with high doxorubicin loading capacity and intracellular pH- and redox-triggered payload release. Eur Polym J 68:104–114CrossRef Zhang Y, Wang C, Huang Y, et al (2015) Core-crosslinked polymeric micelles with high doxorubicin loading capacity and intracellular pH- and redox-triggered payload release. Eur Polym J 68:104–114CrossRef
15.
Zurück zum Zitat Sun H, Guo B, Cheng R, et al (2009) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30:6358–6366CrossRef Sun H, Guo B, Cheng R, et al (2009) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30:6358–6366CrossRef
16.
Zurück zum Zitat Sun H, Meng F, Cheng R, et al (2014) Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 21:755–767CrossRef Sun H, Meng F, Cheng R, et al (2014) Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 21:755–767CrossRef
17.
Zurück zum Zitat Liu C, Yuan J, Luo X, et al (2014) Folate-decorated and Reduction-sensitive micelles assembled from amphiphilic polymer–Camptothecin conjugates for intracellular drug delivery. Mol Pharm 11:4258–4269CrossRef Liu C, Yuan J, Luo X, et al (2014) Folate-decorated and Reduction-sensitive micelles assembled from amphiphilic polymer–Camptothecin conjugates for intracellular drug delivery. Mol Pharm 11:4258–4269CrossRef
18.
Zurück zum Zitat Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48CrossRef Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48CrossRef
19.
Zurück zum Zitat Tian H, Tang Z, Zhuang X, et al (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRef Tian H, Tang Z, Zhuang X, et al (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRef
20.
Zurück zum Zitat Cai M, Leng M, Lu A, et al (2015) Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids Surf B Biointerfaces 126:1–9CrossRef Cai M, Leng M, Lu A, et al (2015) Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids Surf B Biointerfaces 126:1–9CrossRef
21.
Zurück zum Zitat Li Y, Heo HJ, Gao GH, et al (2011) Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer 52:3304–3310CrossRef Li Y, Heo HJ, Gao GH, et al (2011) Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer 52:3304–3310CrossRef
22.
Zurück zum Zitat Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207CrossRef Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207CrossRef
23.
Zurück zum Zitat Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical Q overview of the prototype polymeric drug SMANCS. J. Controlled Release 74:47–61CrossRef Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical Q overview of the prototype polymeric drug SMANCS. J. Controlled Release 74:47–61CrossRef
24.
Zurück zum Zitat Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef
25.
Zurück zum Zitat Kim MS, Lee DS (2010) Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun 46:4481CrossRef Kim MS, Lee DS (2010) Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier. Chem Commun 46:4481CrossRef
26.
Zurück zum Zitat Zhou K, Wang Y, Huang X, et al (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed 50:6109–6114CrossRef Zhou K, Wang Y, Huang X, et al (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed 50:6109–6114CrossRef
27.
Zurück zum Zitat Wu M, Cao Z, Zhao Y, et al (2016) Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. Mater Sci Eng C 64:346–353CrossRef Wu M, Cao Z, Zhao Y, et al (2016) Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. Mater Sci Eng C 64:346–353CrossRef
28.
Zurück zum Zitat Lee S-M, Cho J-H, Lee S-D, Kim Y-C (2015) Nanoparticle-encapsulated P2X7 receptor antagonist in a pH-sensitive polymer as a potential local drug delivery system to acidic inflammatory environments. Bioorg Med Chem Lett 25:4197–4202CrossRef Lee S-M, Cho J-H, Lee S-D, Kim Y-C (2015) Nanoparticle-encapsulated P2X7 receptor antagonist in a pH-sensitive polymer as a potential local drug delivery system to acidic inflammatory environments. Bioorg Med Chem Lett 25:4197–4202CrossRef
29.
Zurück zum Zitat Torchilin VP (2006) Micellar Nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRef Torchilin VP (2006) Micellar Nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRef
30.
Zurück zum Zitat Ma S-F, Nishikawa M, Katsumi H, et al (2005) Cationic charge-dependent hepatic delivery of amidated serum albumin. J Control Release 102:583–594CrossRef Ma S-F, Nishikawa M, Katsumi H, et al (2005) Cationic charge-dependent hepatic delivery of amidated serum albumin. J Control Release 102:583–594CrossRef
31.
Zurück zum Zitat Lee HJ, Pardridge WM (2003) Monoclonal antibody radiopharmaceuticals: Cationization, Pegylation, Radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem 14:546–553CrossRef Lee HJ, Pardridge WM (2003) Monoclonal antibody radiopharmaceuticals: Cationization, Pegylation, Radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem 14:546–553CrossRef
32.
Zurück zum Zitat Du J-Z, Sun T-M, Song W-J, et al (2010) A tumor-acidity-activated charge-conversional Nanogel as an intelligent vehicle for promoted Tumoral-cell uptake and drug delivery. Angew Chem 122:3703–3708CrossRef Du J-Z, Sun T-M, Song W-J, et al (2010) A tumor-acidity-activated charge-conversional Nanogel as an intelligent vehicle for promoted Tumoral-cell uptake and drug delivery. Angew Chem 122:3703–3708CrossRef
33.
Zurück zum Zitat Zhou Z, Shen Y, Tang J, et al (2009) Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater 19:3580–3589CrossRef Zhou Z, Shen Y, Tang J, et al (2009) Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater 19:3580–3589CrossRef
34.
Zurück zum Zitat Gao GH, Lee JW, Nguyen MK, et al (2011) pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Control Release 155:11–17CrossRef Gao GH, Lee JW, Nguyen MK, et al (2011) pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Control Release 155:11–17CrossRef
35.
Zurück zum Zitat Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589CrossRef Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589CrossRef
36.
Zurück zum Zitat Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607CrossRef Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607CrossRef
37.
Zurück zum Zitat Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171CrossRef Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171CrossRef
38.
Zurück zum Zitat Feng L, Liu L, Lv F, et al (2014) Preparation and Biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv Mater 26:3926–3930CrossRef Feng L, Liu L, Lv F, et al (2014) Preparation and Biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv Mater 26:3926–3930CrossRef
39.
Zurück zum Zitat Chen G, Wang L, Cordie T, et al (2015) Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials 47:41–50CrossRef Chen G, Wang L, Cordie T, et al (2015) Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials 47:41–50CrossRef
40.
Zurück zum Zitat Song X, Zhang R, Liang C, et al (2015) Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 57:84–92CrossRef Song X, Zhang R, Liang C, et al (2015) Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials 57:84–92CrossRef
41.
Zurück zum Zitat Nagireddy NR, Yallapu MM, Kokkarachedu V, et al (2011) Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction. J Polym Res 18:2285–2294CrossRef Nagireddy NR, Yallapu MM, Kokkarachedu V, et al (2011) Preparation and characterization of magnetic nanoparticles embedded in hydrogels for protein purification and metal extraction. J Polym Res 18:2285–2294CrossRef
42.
Zurück zum Zitat Gao L, Song Q, Huang X, Huang J (2008) A new surfactant-fluorescence probe for detecting shape transitions in self-assembled systems. J Colloid Interface Sci 323:420–425CrossRef Gao L, Song Q, Huang X, Huang J (2008) A new surfactant-fluorescence probe for detecting shape transitions in self-assembled systems. J Colloid Interface Sci 323:420–425CrossRef
Metadaten
Titel
A pH-triggered charge reversal and self-fluorescent micelle as a smart nanocarrier for doxorubicin controlled release
verfasst von
Shan Xia
Yang Gao
Zhe Yu
Lijie Duan
Guang Hui Gao
Publikationsdatum
01.05.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 6/2017
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-017-1255-y

Weitere Artikel der Ausgabe 6/2017

Journal of Polymer Research 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.