Skip to main content
Erschienen in: Journal of Polymer Research 8/2020

01.08.2020 | REVIEW PAPER

A review on synthesis and biomedical applications of polyglycolic acid

verfasst von: Kamil Budak, Oguz Sogut, Umran Aydemir Sezer

Erschienen in: Journal of Polymer Research | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(glycolic acid) (PGA) is an essential biopolymer due to its thermal and mechanical properties and biodegradability which provide utility for medical applications and renewable industry. For biomedical applications, production of PGA with high molecular weight is an essential factor to possess adequate mechanical stability. Primary pathways for PGA synthesis are ring-opening polymerization of glycolide (ROP), direct polycondensation of glycolic acid, and solid-state polycondensation of halogen acetates. For PGA synthesis, different systems have been developed with using varying parameters including catalysis, initiators, solvents, and reaction temperature. This review summarizes the different synthesis pathways and physicochemical properties of PGA. Biomedical applications of PGA are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sharma A, Sharma G (2018) Biomaterials and their applications. AIP Conf Proc 1953:080041 Sharma A, Sharma G (2018) Biomaterials and their applications. AIP Conf Proc 1953:080041
2.
Zurück zum Zitat Sionkowska A (2011) Progress in polymer science current research on the blends of natural and synthetic polymers as new biomaterials. Prog Polym Sci 36:1254–1276 Sionkowska A (2011) Progress in polymer science current research on the blends of natural and synthetic polymers as new biomaterials. Prog Polym Sci 36:1254–1276
3.
Zurück zum Zitat Soni S, Gupta H, Kumar N, Nishad D, Mittal G, Bhatnagar A (2010) Biodegradable biomaterials. Recent Pat Biomed Eng 3:30–40 Soni S, Gupta H, Kumar N, Nishad D, Mittal G, Bhatnagar A (2010) Biodegradable biomaterials. Recent Pat Biomed Eng 3:30–40
4.
Zurück zum Zitat Nakafuku C, Yoshimura H (2004) Melting parameters of poly(glycolic acid). Polymer (Guildf) 45:3583–3585 Nakafuku C, Yoshimura H (2004) Melting parameters of poly(glycolic acid). Polymer (Guildf) 45:3583–3585
5.
Zurück zum Zitat Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346PubMed Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346PubMed
6.
Zurück zum Zitat Lu Y, Schmidt C, Beuermann S (2015) Fast synthesis of high-molecular-weight Polyglycolide using Diphenyl bismuth bromide as catalyst. Macromol Chem Phys 216:395–399 Lu Y, Schmidt C, Beuermann S (2015) Fast synthesis of high-molecular-weight Polyglycolide using Diphenyl bismuth bromide as catalyst. Macromol Chem Phys 216:395–399
7.
Zurück zum Zitat Göktürk E, Pemba AG, Miller SA (2015) Polyglycolic acid from the direct polymerization of renewable C1 feedstocks. Polym Chem 6(21):3918–3925 Göktürk E, Pemba AG, Miller SA (2015) Polyglycolic acid from the direct polymerization of renewable C1 feedstocks. Polym Chem 6(21):3918–3925
8.
Zurück zum Zitat Yamane K, Sato H, Ichikawa Y, Sunagawa K, Shigaki Y (2014) Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym J 46:769–775 Yamane K, Sato H, Ichikawa Y, Sunagawa K, Shigaki Y (2014) Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym J 46:769–775
10.
Zurück zum Zitat Higgins NA (1954) Condensation polymers of hydroxyacetic acid. U.S. patent 2676945 Higgins NA (1954) Condensation polymers of hydroxyacetic acid. U.S. patent 2676945
11.
Zurück zum Zitat Schmitt EE, Albert R, Chester P (1967) Surgical sutures. U.S. patent 3297033 Schmitt EE, Albert R, Chester P (1967) Surgical sutures. U.S. patent 3297033
12.
Zurück zum Zitat May P, Polistina RA (1969) Process for polymerizing a Glycolide. U.S. patent 3442871 May P, Polistina RA (1969) Process for polymerizing a Glycolide. U.S. patent 3442871
13.
Zurück zum Zitat Reed AM, Road A (1980) Biodegradable polymers for use in surgery - poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation Polymer (Guildf) 22:494–498 Reed AM, Road A (1980) Biodegradable polymers for use in surgery - poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation Polymer (Guildf) 22:494–498
14.
Zurück zum Zitat Ashammakhi N, Rokkanen P (1997) Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18:3–9PubMed Ashammakhi N, Rokkanen P (1997) Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18:3–9PubMed
15.
Zurück zum Zitat Kehoe S, Zhang XF, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43:553–572PubMed Kehoe S, Zhang XF, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43:553–572PubMed
16.
Zurück zum Zitat Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798 Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798
17.
Zurück zum Zitat Suggs LJ, Moore SA, Mikos AG (2007) Synthetic biodegradable polymers for medical applications. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, NY, pp 939–950 Suggs LJ, Moore SA, Mikos AG (2007) Synthetic biodegradable polymers for medical applications. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, NY, pp 939–950
18.
Zurück zum Zitat Jahno VD (2005) Síntese e caracterização do Poli (L-Ácido Láctico) para uso como biomaterial Jahno VD (2005) Síntese e caracterização do Poli (L-Ácido Láctico) para uso como biomaterial
19.
Zurück zum Zitat Benatti ACB, Fla A, Xavier MV, et al (2019) Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. In: Holban AB, Grumezescu AM (eds) Materials for Biomedical Engineering. Elsevier, pp 83–116 Benatti ACB, Fla A, Xavier MV, et al (2019) Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. In: Holban AB, Grumezescu AM (eds) Materials for Biomedical Engineering. Elsevier, pp 83–116
20.
Zurück zum Zitat Takahashi K, Taniguchi I, Miyamoto M, Kimura Y (2000) Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid). Polymer (Guildf) 41:8725–8728 Takahashi K, Taniguchi I, Miyamoto M, Kimura Y (2000) Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly(glycolic acid). Polymer (Guildf) 41:8725–8728
21.
Zurück zum Zitat Agrawal CM, Niederauer GG, Athanasiou KA (1995) Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng 1:241–252PubMed Agrawal CM, Niederauer GG, Athanasiou KA (1995) Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng 1:241–252PubMed
22.
Zurück zum Zitat Sanko V, Sahin I, Aydemir Sezer U, Sezer S (2019) A versatile method for the synthesis of poly(glycolic acid): high solubility and tunable molecular weights. Polym J 51(7):637–647 Sanko V, Sahin I, Aydemir Sezer U, Sezer S (2019) A versatile method for the synthesis of poly(glycolic acid): high solubility and tunable molecular weights. Polym J 51(7):637–647
23.
Zurück zum Zitat Reyhanoglu Y, Sahmetlioglu E, Gokturk E (2019) Alternative approach for synthesizing Polyglycolic acid copolymers from C1 Feedstocks and fatty Ester epoxides. ACS Sustain Chem Eng 7:5103–5110 Reyhanoglu Y, Sahmetlioglu E, Gokturk E (2019) Alternative approach for synthesizing Polyglycolic acid copolymers from C1 Feedstocks and fatty Ester epoxides. ACS Sustain Chem Eng 7:5103–5110
24.
Zurück zum Zitat You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60:757–760 You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60:757–760
25.
Zurück zum Zitat Kariduraganavar MY, Kittur AA, Kamble RR (2014) Polymer synthesis and processing. In: Laurencin CT, Deng M (eds) Sangamesh GK. Elsevier, Natural and Synthetic Biomedical Polymers, pp 1–31 Kariduraganavar MY, Kittur AA, Kamble RR (2014) Polymer synthesis and processing. In: Laurencin CT, Deng M (eds) Sangamesh GK. Elsevier, Natural and Synthetic Biomedical Polymers, pp 1–31
26.
Zurück zum Zitat Lowe CE (1954) Preparation of high molecular weight polyhydroxyacetic ester. U.S. patent 2668162 Lowe CE (1954) Preparation of high molecular weight polyhydroxyacetic ester. U.S. patent 2668162
27.
Zurück zum Zitat Zhaoyang W, Yaoming Z, Yurong Y et al (2004) Hecheng Xianwei Gongye. Hecheng Shuzhi Ji Suliao/China Synth Resin Plast 27:1–20 Zhaoyang W, Yaoming Z, Yurong Y et al (2004) Hecheng Xianwei Gongye. Hecheng Shuzhi Ji Suliao/China Synth Resin Plast 27:1–20
28.
Zurück zum Zitat Fumiaki I, Mineo K, Masahiro O, et al (1994) Process for preparing polyhydroxycarboxylic acid. U.S. patent 5440008 Fumiaki I, Mineo K, Masahiro O, et al (1994) Process for preparing polyhydroxycarboxylic acid. U.S. patent 5440008
29.
Zurück zum Zitat Kameoka R, Higuchi C, Ajioka M, et al (1995) Aliphatic polyester and preparation process thereof. U.S. patent 5428126 Kameoka R, Higuchi C, Ajioka M, et al (1995) Aliphatic polyester and preparation process thereof. U.S. patent 5428126
30.
Zurück zum Zitat Yoshida Y, Miyamoto M, Obuchi S, et al (1998) Preparation process of polyhydroxycarboxylic acid. U.S. patent 5770683 Yoshida Y, Miyamoto M, Obuchi S, et al (1998) Preparation process of polyhydroxycarboxylic acid. U.S. patent 5770683
31.
Zurück zum Zitat Singh V, Tiwari M (2010) Structure-processing-property relationship of poly (glycolic acid) for drug delivery systems 1: synthesis and catalysis. Int J Polym Sci 2010:1–23 Singh V, Tiwari M (2010) Structure-processing-property relationship of poly (glycolic acid) for drug delivery systems 1: synthesis and catalysis. Int J Polym Sci 2010:1–23
32.
Zurück zum Zitat Obuchi S, Elias HG (1995) Preparation process of polyhydroxycarboxylic acid. U.S. patent 5444143 Obuchi S, Elias HG (1995) Preparation process of polyhydroxycarboxylic acid. U.S. patent 5444143
33.
Zurück zum Zitat Enomoto K, Ajioka M, Yamaguchi A (1994) Preparation process of polyhydroxycarboxylic acid thereof. U.S. patent 5310865 Enomoto K, Ajioka M, Yamaguchi A (1994) Preparation process of polyhydroxycarboxylic acid thereof. U.S. patent 5310865
34.
Zurück zum Zitat Masuda T, Kagami K, Murata K et al (1982) Copolymerizatıon of carbon-monoxide with formaldehyde using Trioxane or paraformaldehyde as a formaldehyde source in the presence of the Chlorosulfuric acid catalyst. Nippon Kagaku Kaishi 2:257–262 Masuda T, Kagami K, Murata K et al (1982) Copolymerizatıon of carbon-monoxide with formaldehyde using Trioxane or paraformaldehyde as a formaldehyde source in the presence of the Chlorosulfuric acid catalyst. Nippon Kagaku Kaishi 2:257–262
35.
Zurück zum Zitat Ishihara K, Ohara S, Yamamoto H (2000) Direct Polycondensation of carboxylic acids and amines catalyzed by 3,4,5-Trifluorophenylboronic acid. Macromolecules 33:3511–3513 Ishihara K, Ohara S, Yamamoto H (2000) Direct Polycondensation of carboxylic acids and amines catalyzed by 3,4,5-Trifluorophenylboronic acid. Macromolecules 33:3511–3513
36.
Zurück zum Zitat Kataoka M, Sasaki M, Hidalgo AGD, Nakano M (2001). Glycolic Acid Production Using Ethylene Glycol- Oxidizing Microorganisms 65(10):2265–2270 Kataoka M, Sasaki M, Hidalgo AGD, Nakano M (2001). Glycolic Acid Production Using Ethylene Glycol- Oxidizing Microorganisms 65(10):2265–2270
37.
Zurück zum Zitat Buchholz B (1994) Process for preparing polyesters based on hydroxycarboxylic acids. U.S. patent 5302694 Buchholz B (1994) Process for preparing polyesters based on hydroxycarboxylic acids. U.S. patent 5302694
38.
Zurück zum Zitat Bonsignore PV (1995) Production of high molecular weight polylactic acid. U.S. patent 5470944 Bonsignore PV (1995) Production of high molecular weight polylactic acid. U.S. patent 5470944
39.
Zurück zum Zitat Herzberg O, Epple M (2001) Formation of polyesters by thermally induced polymerization reactions of molecular solids some background information on polyesters. Eur J Inorg Chem 2001(6):1395–1406 Herzberg O, Epple M (2001) Formation of polyesters by thermally induced polymerization reactions of molecular solids some background information on polyesters. Eur J Inorg Chem 2001(6):1395–1406
40.
Zurück zum Zitat Epple M, Herzberg O (1997) Polyglycolide with controlled porosity : an improved biomaterial. J Mater Chem 7:1037–1042 Epple M, Herzberg O (1997) Polyglycolide with controlled porosity : an improved biomaterial. J Mater Chem 7:1037–1042
41.
Zurück zum Zitat Pinkus A, Subramanyam R, Pinkus AG, Subramanyam R (1984) New high-yield, one-step synthesis of polyglycolide from haloacetic acids. J Polym Sci Polym Chem Ed 22:1131–1140 Pinkus A, Subramanyam R, Pinkus AG, Subramanyam R (1984) New high-yield, one-step synthesis of polyglycolide from haloacetic acids. J Polym Sci Polym Chem Ed 22:1131–1140
42.
Zurück zum Zitat Xiguang D, Li C, Chen Q, Xuesi C (2003) Dongbei Shida Xuebao. Dongbei Shida Xuebao / Ziran Kexue Ban 35:119 Xiguang D, Li C, Chen Q, Xuesi C (2003) Dongbei Shida Xuebao. Dongbei Shida Xuebao / Ziran Kexue Ban 35:119
43.
Zurück zum Zitat Schmidt C, Behl M, Beuermann S (2014) RSC advances synthesis of high molecular weight polyglycolide in supercritical carbon dioxide. Macromol Chem Phys 4:35099–35105 Schmidt C, Behl M, Beuermann S (2014) RSC advances synthesis of high molecular weight polyglycolide in supercritical carbon dioxide. Macromol Chem Phys 4:35099–35105
44.
Zurück zum Zitat Shen K, Yang S (2013) Preparation of high-molecular-weight poly (glycolic acid) by direct melt polycondensation from glycolic acid. Adv Mater Res 821:1023–1026 Shen K, Yang S (2013) Preparation of high-molecular-weight poly (glycolic acid) by direct melt polycondensation from glycolic acid. Adv Mater Res 821:1023–1026
45.
Zurück zum Zitat Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly( clactide) initiated with tin 2-ethylhexanoate. Die Makromol Chemie Macromol Chem Phys 188:1809–1814 Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly( clactide) initiated with tin 2-ethylhexanoate. Die Makromol Chemie Macromol Chem Phys 188:1809–1814
46.
Zurück zum Zitat Nieuwenhuis J (1992) Synthesis of polylactides, polyglycolides and their copolymers. Clin Mater 10(1):59–67PubMed Nieuwenhuis J (1992) Synthesis of polylactides, polyglycolides and their copolymers. Clin Mater 10(1):59–67PubMed
47.
Zurück zum Zitat Dawkins J V (1989) Aqueous suspension polymerization in comprehensive polymer science. In: Pergamon press, Oxford. Pp 231 Dawkins J V (1989) Aqueous suspension polymerization in comprehensive polymer science. In: Pergamon press, Oxford. Pp 231
48.
Zurück zum Zitat Boehringer A, Liebrecht I, Liebrecht J LW (1957) Improvements in or relating to the polymerization of cyclic esters. U.S. patent 825335 Boehringer A, Liebrecht I, Liebrecht J LW (1957) Improvements in or relating to the polymerization of cyclic esters. U.S. patent 825335
49.
Zurück zum Zitat Chujo K, Kobayashi H, Suzuki J, Tokuhara S, Tanabe M (1967) Ring-opening polymerization of glycolide. Die Makromol Chemie Macromol Chem Phys 100:262–266 Chujo K, Kobayashi H, Suzuki J, Tokuhara S, Tanabe M (1967) Ring-opening polymerization of glycolide. Die Makromol Chemie Macromol Chem Phys 100:262–266
50.
Zurück zum Zitat Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Controlled cationic polymerization of lactide. Macromolecules 38:9993–9998 Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Controlled cationic polymerization of lactide. Macromolecules 38:9993–9998
51.
Zurück zum Zitat Reyhanoglu Y, Gokturk E (2019) Polyglycolic acid copolymers from one-step cationic polymerization of formaldehyde, carbon monoxide, and epoxides derived from PEG. Polym Adv Technol 30:1789–1795 Reyhanoglu Y, Gokturk E (2019) Polyglycolic acid copolymers from one-step cationic polymerization of formaldehyde, carbon monoxide, and epoxides derived from PEG. Polym Adv Technol 30:1789–1795
52.
Zurück zum Zitat Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486PubMed Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486PubMed
53.
Zurück zum Zitat Jedlinski Z, Kurcok P, Kowalczuk M (1985) Polymerization of. Beta.-lactones initiated by potassium solutions. Macromolecules 18:2679–2683 Jedlinski Z, Kurcok P, Kowalczuk M (1985) Polymerization of. Beta.-lactones initiated by potassium solutions. Macromolecules 18:2679–2683
54.
Zurück zum Zitat Murugan KD, Radhika S, Baskaran I, Anbarasan R (2008) Clay catalyzed synthesis of bio-degradable poly (glycolic acid). Chinese J Polym Sci 26:393–398 Murugan KD, Radhika S, Baskaran I, Anbarasan R (2008) Clay catalyzed synthesis of bio-degradable poly (glycolic acid). Chinese J Polym Sci 26:393–398
55.
Zurück zum Zitat Gharbi REL, Fradet A, Dali S (2006) Synthesis of poly (glycolic acid) in ionic liquids. J Polym Sci Part A Polym Chem 44:3025–3035 Gharbi REL, Fradet A, Dali S (2006) Synthesis of poly (glycolic acid) in ionic liquids. J Polym Sci Part A Polym Chem 44:3025–3035
56.
Zurück zum Zitat Epple M, Kirschnick H (1996) The thermally induced solid-state polymerization reaction in Halogenoacetates. Chem Ber 129:1123–1129 Epple M, Kirschnick H (1996) The thermally induced solid-state polymerization reaction in Halogenoacetates. Chem Ber 129:1123–1129
57.
Zurück zum Zitat Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144 Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144
58.
Zurück zum Zitat Yu C, Bao J, Xie Q, Shan G, Bao Y, Pan P (2016) Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated: via temperature-variable WAXD and FTIR analysis. Cryst Eng Comm 18:7894–7902 Yu C, Bao J, Xie Q, Shan G, Bao Y, Pan P (2016) Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated: via temperature-variable WAXD and FTIR analysis. Cryst Eng Comm 18:7894–7902
59.
Zurück zum Zitat Agrawal A, Saran AD, Rath SS, Khanna A (2004) Constrained nonlinear optimization for solubility parameters of poly (lactic acid) and poly (glycolic acid)—validation and comparison. Polymer (Guildf) 45:8603–8612 Agrawal A, Saran AD, Rath SS, Khanna A (2004) Constrained nonlinear optimization for solubility parameters of poly (lactic acid) and poly (glycolic acid)—validation and comparison. Polymer (Guildf) 45:8603–8612
60.
Zurück zum Zitat Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442 Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442
61.
Zurück zum Zitat Kister G, Cassanas G, Vert M (1997) Morphology of poly(glycolic acid) by IR and Raman spectroscopies. Spectrochim Acta - Part A Mol Biomol Spectrosc 53:1399–1403 Kister G, Cassanas G, Vert M (1997) Morphology of poly(glycolic acid) by IR and Raman spectroscopies. Spectrochim Acta - Part A Mol Biomol Spectrosc 53:1399–1403
62.
Zurück zum Zitat Chatani Y, Suehiro K, Ôkita Y, Tadokoro H, Chujo K (1968) Structural studies of polyesters. I. Crystal structure of polyglycolide. Die Makromol Chemie Macromol Chem Phys 113:215–229 Chatani Y, Suehiro K, Ôkita Y, Tadokoro H, Chujo K (1968) Structural studies of polyesters. I. Crystal structure of polyglycolide. Die Makromol Chemie Macromol Chem Phys 113:215–229
63.
Zurück zum Zitat Chu CC (1981) The in-vitro degradation of poly (glycolic acid) sutures—effect of pH. J Biomed Mater Res 15:795–804PubMed Chu CC (1981) The in-vitro degradation of poly (glycolic acid) sutures—effect of pH. J Biomed Mater Res 15:795–804PubMed
64.
Zurück zum Zitat Williams DF, Mort E (1977) Enzyme-accelerated hydrolysis of polyglycolic acid. J Bioeng 1:231–238PubMed Williams DF, Mort E (1977) Enzyme-accelerated hydrolysis of polyglycolic acid. J Bioeng 1:231–238PubMed
65.
Zurück zum Zitat Li S (2016) Synthetic biodegradable medical polyesters. In: Zhang X (ed) science and principles of biodegradable and Bioresorbable medical polymers: materials and properties. Woodhead publishing, pp 37–70 Li S (2016) Synthetic biodegradable medical polyesters. In: Zhang X (ed) science and principles of biodegradable and Bioresorbable medical polymers: materials and properties. Woodhead publishing, pp 37–70
66.
Zurück zum Zitat Kumbar S, Laurencin C, Deng M (2014) Natural and synthetic biomedical polymers. Elsevier, USA Kumbar S, Laurencin C, Deng M (2014) Natural and synthetic biomedical polymers. Elsevier, USA
67.
Zurück zum Zitat Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 107:367–392PubMed Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 107:367–392PubMed
68.
Zurück zum Zitat Lin CC (1983) The rate of crystallization of poly(ethylene terephthalate) by differential scanning Calorimetry. Polym Eng Sci 23:113–116 Lin CC (1983) The rate of crystallization of poly(ethylene terephthalate) by differential scanning Calorimetry. Polym Eng Sci 23:113–116
69.
Zurück zum Zitat Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12:292–304PubMed Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12:292–304PubMed
70.
Zurück zum Zitat Ueda H, Tabata Y (2003) Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55:501–518PubMed Ueda H, Tabata Y (2003) Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55:501–518PubMed
71.
Zurück zum Zitat Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864 Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864
72.
Zurück zum Zitat Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347PubMed Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347PubMed
73.
Zurück zum Zitat Pätilä T, Jokinen JJ, Salminen J, Kankuri E, Harjula A (2008) Polyglycolic acid glue does not prevent Intrapericardial adhesions in a short-term follow-up. J Surg Res 148:181–184PubMed Pätilä T, Jokinen JJ, Salminen J, Kankuri E, Harjula A (2008) Polyglycolic acid glue does not prevent Intrapericardial adhesions in a short-term follow-up. J Surg Res 148:181–184PubMed
74.
Zurück zum Zitat Aysan E, Bektas H, Ersoz F et al (2010) A novel colonic anastomosis technique involving fixed polyglycolic acid mesh. Int J Clin Exp Med 3:341PubMedPubMedCentral Aysan E, Bektas H, Ersoz F et al (2010) A novel colonic anastomosis technique involving fixed polyglycolic acid mesh. Int J Clin Exp Med 3:341PubMedPubMedCentral
75.
Zurück zum Zitat Caballé-Serrano J, Munar-Frau A, Delgado L, Pérez R, Hernández –Alfaro F (2019) Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater 97:13–20PubMed Caballé-Serrano J, Munar-Frau A, Delgado L, Pérez R, Hernández –Alfaro F (2019) Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater 97:13–20PubMed
76.
Zurück zum Zitat Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers (Basel) 8:115 Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers (Basel) 8:115
77.
Zurück zum Zitat Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K (2013) Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 57:3–14PubMed Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K (2013) Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 57:3–14PubMed
78.
Zurück zum Zitat Scantlebury TV (1993) 1982-1992: a decade of technology development for guided tissue regeneration. J Periodontol 64:1129–1137PubMed Scantlebury TV (1993) 1982-1992: a decade of technology development for guided tissue regeneration. J Periodontol 64:1129–1137PubMed
79.
Zurück zum Zitat Caffesse RG, Mota LF, Quiñones CR, Morrison EC (1997) Clinical comparison of resorbable and non-resorbable barriers for guided periodontal tissue regeneration. J Clin Periodontol 24:747–752PubMed Caffesse RG, Mota LF, Quiñones CR, Morrison EC (1997) Clinical comparison of resorbable and non-resorbable barriers for guided periodontal tissue regeneration. J Clin Periodontol 24:747–752PubMed
80.
Zurück zum Zitat Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6:1187–1197PubMed Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6:1187–1197PubMed
81.
Zurück zum Zitat Hutmacher D, Hürzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11:667–668PubMed Hutmacher D, Hürzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11:667–668PubMed
82.
Zurück zum Zitat Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10:81PubMedPubMedCentral Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10:81PubMedPubMedCentral
83.
Zurück zum Zitat Isogai N, Landis W, Kim TH et al (1999) Formation of phalanges and small joints by tissue-engineering. JBJS 81:306–316 Isogai N, Landis W, Kim TH et al (1999) Formation of phalanges and small joints by tissue-engineering. JBJS 81:306–316
84.
Zurück zum Zitat McVicar I, Hatton PV, Brook IM (1995) Self-reinforced polyglycolic acid membrane: a bioresorbable material for orbital floor repair. Initial clinical report. Br J Oral Maxillofac Surg 33:220–223PubMed McVicar I, Hatton PV, Brook IM (1995) Self-reinforced polyglycolic acid membrane: a bioresorbable material for orbital floor repair. Initial clinical report. Br J Oral Maxillofac Surg 33:220–223PubMed
85.
Zurück zum Zitat Törmälä P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 1:29–34 Törmälä P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 1:29–34
86.
Zurück zum Zitat Semwal R, Semwal RB, Semwal DK (2017) Drug delivery systems: selection criteria and use. Concise Encycl Biomed Polym Polym Biomater 439–450 Semwal R, Semwal RB, Semwal DK (2017) Drug delivery systems: selection criteria and use. Concise Encycl Biomed Polym Polym Biomater 439–450
87.
Zurück zum Zitat Mao HQ, Kdaiyala I, Leong KW et al (1999) Biodegradable polymers: polyesters. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery. John Wiley and Sons, New York, NY, pp 45–60 Mao HQ, Kdaiyala I, Leong KW et al (1999) Biodegradable polymers: polyesters. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery. John Wiley and Sons, New York, NY, pp 45–60
88.
Zurück zum Zitat Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33:94–101PubMed Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33:94–101PubMed
89.
Zurück zum Zitat Li S, Vert M (1999) Biodegradable polymers: Polyesters. Montpellier, France Li S, Vert M (1999) Biodegradable polymers: Polyesters. Montpellier, France
90.
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146 Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146
91.
Zurück zum Zitat Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98:47–56PubMed Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98:47–56PubMed
92.
Zurück zum Zitat Pan H, Jiang H, Chen W (2006) Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials 27:3209–3220PubMed Pan H, Jiang H, Chen W (2006) Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials 27:3209–3220PubMed
93.
Zurück zum Zitat Joshi J a YR, Patel RP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81 Joshi J a YR, Patel RP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81
94.
Zurück zum Zitat Braunecker J, Baba M, Milroy GE, Cameron RE (2004) The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. Int J Pharm 282:19–34PubMed Braunecker J, Baba M, Milroy GE, Cameron RE (2004) The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. Int J Pharm 282:19–34PubMed
95.
Zurück zum Zitat Moll F, Ries R (1991) Biodegradable microtablets made of low molecular weight polyglycolic acid: Bioabbaubare Mikrotabletten aus niedermolekularer Polyglycolsäure. Arch Pharm (Weinheim) 324:939–940 Moll F, Ries R (1991) Biodegradable microtablets made of low molecular weight polyglycolic acid: Bioabbaubare Mikrotabletten aus niedermolekularer Polyglycolsäure. Arch Pharm (Weinheim) 324:939–940
96.
Zurück zum Zitat Hurrell S, Cameron RE (2003) The effect of buffer concentration, pH and buffer ions on the degradation and drug release from polyglycolide. Polym Int 52:358–366 Hurrell S, Cameron RE (2003) The effect of buffer concentration, pH and buffer ions on the degradation and drug release from polyglycolide. Polym Int 52:358–366
97.
Zurück zum Zitat Hurrell S, Cameron RE (2002) The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 23:2401–2409PubMed Hurrell S, Cameron RE (2002) The effect of initial polymer morphology on the degradation and drug release from polyglycolide. Biomaterials 23:2401–2409PubMed
98.
Zurück zum Zitat Hurrell S, Milroy GE, Cameron RE (2003) The distribution of water in degrading polyglycolide. Part I: Sample size and drug release J Mater Sci Mater Med 14:457–464PubMed Hurrell S, Milroy GE, Cameron RE (2003) The distribution of water in degrading polyglycolide. Part I: Sample size and drug release J Mater Sci Mater Med 14:457–464PubMed
99.
Zurück zum Zitat Milroy GE, Cameron RE, Mantle MD, Gladden LF, Huatan H (2003) The distribution of water in degrading polyglycolide. Part II: magnetic resonance imaging and drug release. J Mater Sci Mater Med 14:465–473PubMed Milroy GE, Cameron RE, Mantle MD, Gladden LF, Huatan H (2003) The distribution of water in degrading polyglycolide. Part II: magnetic resonance imaging and drug release. J Mater Sci Mater Med 14:465–473PubMed
100.
Zurück zum Zitat Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794 Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794
101.
Zurück zum Zitat Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:33–44 Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:33–44
102.
Zurück zum Zitat Schumann P, Lindhorst D, Wagner MEH, Schramm A, Gellrich NC, Rücker M (2013) Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery. Pathobiology 80:211–217PubMed Schumann P, Lindhorst D, Wagner MEH, Schramm A, Gellrich NC, Rücker M (2013) Perspectives on resorbable osteosynthesis materials in craniomaxillofacial surgery. Pathobiology 80:211–217PubMed
103.
Zurück zum Zitat Van Bakelen NB, Buijs GJ, Jansma J et al (2014) Decision-making considerations in application of biodegradable fixation systems in maxillofacial surgery - a retrospective cohort study. J Cranio-Maxillofacial Surg 42:417–422 Van Bakelen NB, Buijs GJ, Jansma J et al (2014) Decision-making considerations in application of biodegradable fixation systems in maxillofacial surgery - a retrospective cohort study. J Cranio-Maxillofacial Surg 42:417–422
104.
Zurück zum Zitat Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J (2018) Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev 54:127–138PubMedPubMedCentral Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J (2018) Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev 54:127–138PubMedPubMedCentral
105.
Zurück zum Zitat Vasenius J, Vainionpää S, Vihtonen K, Mäkelä A, Rokkanen P, Mero M, Törmälä P (1990) Comparison of in vitro hydrolysis, subcutaneous and intramedullary implantation to evaluate the strength retention of absorbable osteosynthesis implants. Biomaterials 11:501–504PubMed Vasenius J, Vainionpää S, Vihtonen K, Mäkelä A, Rokkanen P, Mero M, Törmälä P (1990) Comparison of in vitro hydrolysis, subcutaneous and intramedullary implantation to evaluate the strength retention of absorbable osteosynthesis implants. Biomaterials 11:501–504PubMed
106.
Zurück zum Zitat Okuyama K, Yanamoto S, Naruse T, Sakamoto Y, Rokutanda S, Ohba S, Asahina I, Umeda M (2018) Clinical complications in the application of polyglycolic acid sheets with fibrin glue after resection of mucosal lesions in oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol 125:541–546PubMed Okuyama K, Yanamoto S, Naruse T, Sakamoto Y, Rokutanda S, Ohba S, Asahina I, Umeda M (2018) Clinical complications in the application of polyglycolic acid sheets with fibrin glue after resection of mucosal lesions in oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol 125:541–546PubMed
107.
Zurück zum Zitat Cipurković A, Horozić E, Đonlagić N et al (2018) Biodegradable polymers: production, properties and application in medicine. Technol Acta 11:25–35 Cipurković A, Horozić E, Đonlagić N et al (2018) Biodegradable polymers: production, properties and application in medicine. Technol Acta 11:25–35
108.
Zurück zum Zitat Chung C, Ki D, Park Y et al (1997) Biological effects of drug-loaded biodegradable membranes for guided bone regeneration. J Periodontal Res 32:172–175PubMed Chung C, Ki D, Park Y et al (1997) Biological effects of drug-loaded biodegradable membranes for guided bone regeneration. J Periodontal Res 32:172–175PubMed
109.
Zurück zum Zitat Mooney DJ, Mazzoni CL, Breuer C, et al (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. In: Williams DF (ed) The biomaterials: silver Jubilee Compendium. Elsevier, pp 129–138 Mooney DJ, Mazzoni CL, Breuer C, et al (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. In: Williams DF (ed) The biomaterials: silver Jubilee Compendium. Elsevier, pp 129–138
110.
Zurück zum Zitat Li S (2017) Synthetic biodegradable medical polyesters. In: Zhang X (ed) Science and principles of biodegradable and Bioresorbable medical polymers. Elsevier, pp 37–78 Li S (2017) Synthetic biodegradable medical polyesters. In: Zhang X (ed) Science and principles of biodegradable and Bioresorbable medical polymers. Elsevier, pp 37–78
111.
Zurück zum Zitat Okamoto T, Rosini KS, Miyahara GI, Gabrielli MF (1994) Healing process of the gingival mucosa and dental alveolus following tooth extraction and suture with polyglycolic acid and polyglactin 910 threads. Comparative histomorphologic study in rats. Braz Dent J 5:35–43PubMed Okamoto T, Rosini KS, Miyahara GI, Gabrielli MF (1994) Healing process of the gingival mucosa and dental alveolus following tooth extraction and suture with polyglycolic acid and polyglactin 910 threads. Comparative histomorphologic study in rats. Braz Dent J 5:35–43PubMed
112.
Zurück zum Zitat Mizutani T, Nakayama A, Iwasaki H, Miyazawa H (2012) Suitability of polymers as screw post materials in primary teeth: an in vitro study. Eur J Paediatr Dent 13:19PubMed Mizutani T, Nakayama A, Iwasaki H, Miyazawa H (2012) Suitability of polymers as screw post materials in primary teeth: an in vitro study. Eur J Paediatr Dent 13:19PubMed
113.
Zurück zum Zitat Nagatomi J (2006) Mechanical adaptation of bone: bioreactors for orthopedic tissue engineering applications. In: Salz U (ed) Shalaby SW. CRC Press, Polymers for Dental and Orthopedic Applications, pp 351–367 Nagatomi J (2006) Mechanical adaptation of bone: bioreactors for orthopedic tissue engineering applications. In: Salz U (ed) Shalaby SW. CRC Press, Polymers for Dental and Orthopedic Applications, pp 351–367
114.
Zurück zum Zitat Frölke JPM, Nulend JK, Semeins CM et al (2004) Viable osteoblastic potential of cortical reamings from intramedullary nailing. J Orthop Res 22:1271–1275PubMed Frölke JPM, Nulend JK, Semeins CM et al (2004) Viable osteoblastic potential of cortical reamings from intramedullary nailing. J Orthop Res 22:1271–1275PubMed
115.
Zurück zum Zitat Agrawal CM (2002) Biodegradable polymers for orthopaedic applications. In: Reis RL, Cohn D (eds) Polymer based systems on tissue engineering. Replacement and Regeneration. Springer, Dordrecht, pp 25–36 Agrawal CM (2002) Biodegradable polymers for orthopaedic applications. In: Reis RL, Cohn D (eds) Polymer based systems on tissue engineering. Replacement and Regeneration. Springer, Dordrecht, pp 25–36
116.
Zurück zum Zitat Borden M, Attawia M, Laurencin CT (2002) The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 61:421–429PubMed Borden M, Attawia M, Laurencin CT (2002) The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 61:421–429PubMed
117.
Zurück zum Zitat Borden M, Attawia M, Khan Y et al (2004) Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Jt Surgery Br Vol 86:1200–1208 Borden M, Attawia M, Khan Y et al (2004) Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Jt Surgery Br Vol 86:1200–1208
118.
Zurück zum Zitat Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomater Silver Jubil Compend 14:323–330 Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomater Silver Jubil Compend 14:323–330
119.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer (Guildf) 35:1068–1077 Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer (Guildf) 35:1068–1077
120.
Zurück zum Zitat Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532PubMed Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532PubMed
121.
Zurück zum Zitat Lu HH, Cooper JA, Manuel S et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816PubMed Lu HH, Cooper JA, Manuel S et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816PubMed
122.
Zurück zum Zitat Cohen SB, Meirisch CM, Wilson HA, Diduch DR (2003) The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 24:2653–2660PubMed Cohen SB, Meirisch CM, Wilson HA, Diduch DR (2003) The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 24:2653–2660PubMed
123.
Zurück zum Zitat Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189PubMed Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189PubMed
124.
Zurück zum Zitat Moran JM, Pazzano D, Bonassar LJ (2003) Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 9:63–70PubMed Moran JM, Pazzano D, Bonassar LJ (2003) Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 9:63–70PubMed
125.
Zurück zum Zitat Ma PX, Langer R (1995) Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering. Mater Res Soc Symp - Proc 394:99–104 Ma PX, Langer R (1995) Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering. Mater Res Soc Symp - Proc 394:99–104
126.
Zurück zum Zitat Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater 13(12):511–517 Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater 13(12):511–517
127.
Zurück zum Zitat Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1:541–545PubMedPubMedCentral Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1:541–545PubMedPubMedCentral
128.
Zurück zum Zitat Hosseini V, Evrova O, Hoerstrup SP, Vogel V (2018) A simple modification method to obtain anisotropic and porous 3D microfibrillar scaffolds for surgical and biomedical applications. Small 14:1702650 Hosseini V, Evrova O, Hoerstrup SP, Vogel V (2018) A simple modification method to obtain anisotropic and porous 3D microfibrillar scaffolds for surgical and biomedical applications. Small 14:1702650
129.
Zurück zum Zitat Kodama S, Kojima K, Furuta S, Chambers M, Paz AC, Vacanti CA (2009) Engineering functional islets from cultured cells. Tissue Eng A 15:3321–3329 Kodama S, Kojima K, Furuta S, Chambers M, Paz AC, Vacanti CA (2009) Engineering functional islets from cultured cells. Tissue Eng A 15:3321–3329
130.
Zurück zum Zitat Pina S, Ferreira JMF (2012) Bioresorbable plates and screws for clinical applications: a review. J Healthc Eng 3:243–260 Pina S, Ferreira JMF (2012) Bioresorbable plates and screws for clinical applications: a review. J Healthc Eng 3:243–260
131.
Zurück zum Zitat Vainionpää S, Kilpikari J, Laiho J, Helevirta P, Rokkanen P, Törmälä P (1987) Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 8:46–48PubMed Vainionpää S, Kilpikari J, Laiho J, Helevirta P, Rokkanen P, Törmälä P (1987) Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 8:46–48PubMed
132.
Zurück zum Zitat Thompson DE, Agrawal CM, Athanasiou K (1996) The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid–polyglycolic acid. Tissue Eng 2:61–74PubMed Thompson DE, Agrawal CM, Athanasiou K (1996) The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid–polyglycolic acid. Tissue Eng 2:61–74PubMed
133.
Zurück zum Zitat Eberhart RC, Su S-H, Nguyen KT, Zilberman M, Tang L, Nelson KD, Frenkel P (2003) Bioresorbable polymeric stents: current status and future promise. J Biomater Sci Polym Ed 14:299–312PubMed Eberhart RC, Su S-H, Nguyen KT, Zilberman M, Tang L, Nelson KD, Frenkel P (2003) Bioresorbable polymeric stents: current status and future promise. J Biomater Sci Polym Ed 14:299–312PubMed
134.
Zurück zum Zitat Labinaz M, Zidar JP, Stack RS, Phillips HR (1995) Biodegradable stents: the future of interventional cardiology? J Interv Cardiol 8:395–405PubMed Labinaz M, Zidar JP, Stack RS, Phillips HR (1995) Biodegradable stents: the future of interventional cardiology? J Interv Cardiol 8:395–405PubMed
135.
Zurück zum Zitat Colombo A, Karvouni E (2000) Biodegradable Stents: “Fulfilling the Mission and Stepping Away.” Circulation 102:371–374 Colombo A, Karvouni E (2000) Biodegradable Stents: “Fulfilling the Mission and Stepping Away.” Circulation 102:371–374
136.
Zurück zum Zitat Tanguay JF, Zidar JP, Phillips HR, Stack RS (1994) Current status of biodegradable stents. Cardiol Clin 12:699–713PubMed Tanguay JF, Zidar JP, Phillips HR, Stack RS (1994) Current status of biodegradable stents. Cardiol Clin 12:699–713PubMed
137.
Zurück zum Zitat Van der Giessen WJ, Lincoff AM, Schwartz RS et al (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697PubMed Van der Giessen WJ, Lincoff AM, Schwartz RS et al (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697PubMed
138.
Zurück zum Zitat Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Tech Sports Med 12:158–160 Maurus PB, Kaeding CC (2004) Bioabsorbable implant material review. Oper Tech Sports Med 12:158–160
139.
Zurück zum Zitat Pillai CKS, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366PubMed Pillai CKS, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366PubMed
140.
Zurück zum Zitat Tomihata K, Suzuki M, Ikada Y (2001) The pH dependence of monofilament sutures on hydrolytic degradation. J Biomed Mater Res 58:511–518PubMed Tomihata K, Suzuki M, Ikada Y (2001) The pH dependence of monofilament sutures on hydrolytic degradation. J Biomed Mater Res 58:511–518PubMed
141.
Zurück zum Zitat Nakamura T, Shimizu Y, Watanabe S, Hitomi S, Kitano M, Tamada J, Matsunobe S (1990) New bioabsorbable pledgets and non-woven fabrics made from polyglycolide (PGA) for pulmonary surgery: clinical experience. Thorac Cardiovasc Surg 38:81–85PubMed Nakamura T, Shimizu Y, Watanabe S, Hitomi S, Kitano M, Tamada J, Matsunobe S (1990) New bioabsorbable pledgets and non-woven fabrics made from polyglycolide (PGA) for pulmonary surgery: clinical experience. Thorac Cardiovasc Surg 38:81–85PubMed
142.
Zurück zum Zitat Munteanu R, Eva L, Dobrovăţ B et al (2017) Longer survival of a patient with glioblastoma resected with 5-aminolevulinic acid (5-ALA)-guided surgery and foreign body reaction to polyglycolic acid (PGA) suture. Romanian J Morphol Embryol 58:671–680 Munteanu R, Eva L, Dobrovăţ B et al (2017) Longer survival of a patient with glioblastoma resected with 5-aminolevulinic acid (5-ALA)-guided surgery and foreign body reaction to polyglycolic acid (PGA) suture. Romanian J Morphol Embryol 58:671–680
143.
Zurück zum Zitat Chu CC, Campbell ND (1982) Scanning electron microscopic study of the hydrolytic degradation of poly (glycolic acid) suture. J Biomed Mater Res 16:417–430PubMed Chu CC, Campbell ND (1982) Scanning electron microscopic study of the hydrolytic degradation of poly (glycolic acid) suture. J Biomed Mater Res 16:417–430PubMed
144.
Zurück zum Zitat Chu CC, Williams DF (1983) The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures. J Biomed Mater Res 17:1029–1040PubMed Chu CC, Williams DF (1983) The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures. J Biomed Mater Res 17:1029–1040PubMed
145.
Zurück zum Zitat Jang J-Y, Shin YC, Han Y, Park JS, Han HS, Hwang HK, Yoon DS, Kim JK, Yoon YS, Hwang DW, Kang CM, Lee WJ, Heo JS, Kang MJ, Chang YR, Chang J, Jung W, Kim SW (2017) Effect of polyglycolic acid mesh for prevention of pancreatic fistula following distal pancreatectomy: a randomized clinical trial. JAMA Surg 152:150–155PubMed Jang J-Y, Shin YC, Han Y, Park JS, Han HS, Hwang HK, Yoon DS, Kim JK, Yoon YS, Hwang DW, Kang CM, Lee WJ, Heo JS, Kang MJ, Chang YR, Chang J, Jung W, Kim SW (2017) Effect of polyglycolic acid mesh for prevention of pancreatic fistula following distal pancreatectomy: a randomized clinical trial. JAMA Surg 152:150–155PubMed
146.
Zurück zum Zitat Knecht S, Erggelet C, Endres M et al (2007) Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. J Biomed Mater Res Part B Appl Biomater 83:50–57PubMed Knecht S, Erggelet C, Endres M et al (2007) Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. J Biomed Mater Res Part B Appl Biomater 83:50–57PubMed
147.
Zurück zum Zitat Wang L, Dormer NH, Bonewald LF, Detamore MS (2010) Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng - Part A 16:1936–1948 Wang L, Dormer NH, Bonewald LF, Detamore MS (2010) Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng - Part A 16:1936–1948
148.
Zurück zum Zitat Dunne N, Jack V, O’Hara R, Farrar D, Buchanan F (2010) Performance of calcium deficient hydroxyapatite–polyglycolic acid composites: an in vitro study. J Mater Sci Mater Med 21:2263–2270PubMed Dunne N, Jack V, O’Hara R, Farrar D, Buchanan F (2010) Performance of calcium deficient hydroxyapatite–polyglycolic acid composites: an in vitro study. J Mater Sci Mater Med 21:2263–2270PubMed
149.
Zurück zum Zitat Pihlajamäki HK, Salminen ST, Tynninen O, Böstman OM, Laitinen O (2010) Tissue restoration after implantation of polyglycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: an experimental study in rabbits. Calcif Tissue Int 87:90–98PubMedPubMedCentral Pihlajamäki HK, Salminen ST, Tynninen O, Böstman OM, Laitinen O (2010) Tissue restoration after implantation of polyglycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: an experimental study in rabbits. Calcif Tissue Int 87:90–98PubMedPubMedCentral
150.
Zurück zum Zitat Pihlajamäki H, Tynninen O, Karjalainen P, Rokkanen P (2007) The impact of polyglycolide membrane on a tendon after surgical rejoining. A histological and histomorphometric analysis in rabbits J Biomed Mater Res - Part A 81:987–993 Pihlajamäki H, Tynninen O, Karjalainen P, Rokkanen P (2007) The impact of polyglycolide membrane on a tendon after surgical rejoining. A histological and histomorphometric analysis in rabbits J Biomed Mater Res - Part A 81:987–993
151.
Zurück zum Zitat Xu L, Cao D, Liu W, Zhou G, Zhang WJ, Cao Y (2010) In vivo engineering of a functional tendon sheath in a hen model. Biomaterials 31:3894–3902PubMed Xu L, Cao D, Liu W, Zhou G, Zhang WJ, Cao Y (2010) In vivo engineering of a functional tendon sheath in a hen model. Biomaterials 31:3894–3902PubMed
152.
Zurück zum Zitat Ohara T, Itaya T, Usami K et al (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res - Part A 94:800–805 Ohara T, Itaya T, Usami K et al (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res - Part A 94:800–805
153.
Zurück zum Zitat Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW (2009) In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med 37:71–80 Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW (2009) In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med 37:71–80
154.
Zurück zum Zitat Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867PubMed Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867PubMed
155.
Zurück zum Zitat Sayasneh A, Johnson H (2010) Risk factors for mesh erosion complicating vaginal reconstructive surgery. J Obstet Gynaecol (Lahore) 30:721–724 Sayasneh A, Johnson H (2010) Risk factors for mesh erosion complicating vaginal reconstructive surgery. J Obstet Gynaecol (Lahore) 30:721–724
156.
Zurück zum Zitat Dai T ting, Jiang Z hua, Li S li, et al (2010) Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150:182–189 Dai T ting, Jiang Z hua, Li S li, et al (2010) Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150:182–189
157.
Zurück zum Zitat Abbushi A, Endres M, Cabraja M, Kroppenstedt SN, Thomale UW, Sittinger M, Hegewald AA, Morawietz L, Lemke AJ, Bansemer VG, Kaps C, Woiciechowsky C (2008) Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine (Phila Pa 1976) 33:1527–1532 Abbushi A, Endres M, Cabraja M, Kroppenstedt SN, Thomale UW, Sittinger M, Hegewald AA, Morawietz L, Lemke AJ, Bansemer VG, Kaps C, Woiciechowsky C (2008) Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine (Phila Pa 1976) 33:1527–1532
158.
Zurück zum Zitat Vacanti CA, Vacanti JP, Langer R (1993) Tissue engineering using synthetic biodegradable polymers. In: Ikada Y, Langer R, Williams J (eds) Shalaby. WS. ACS Publications, Polymers of Biological and Biomedical Significance, pp 16–34 Vacanti CA, Vacanti JP, Langer R (1993) Tissue engineering using synthetic biodegradable polymers. In: Ikada Y, Langer R, Williams J (eds) Shalaby. WS. ACS Publications, Polymers of Biological and Biomedical Significance, pp 16–34
159.
Zurück zum Zitat Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer Jr JE (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–546PubMed Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer Jr JE (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–546PubMed
160.
Zurück zum Zitat Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer Jr JE (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304PubMed Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer Jr JE (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304PubMed
161.
Zurück zum Zitat Niklason LE, Gao J, Abbott WM, et al (1999) Functional arteries grown in vitro. Science (80- ) 284:489–493 Niklason LE, Gao J, Abbott WM, et al (1999) Functional arteries grown in vitro. Science (80- ) 284:489–493
162.
Zurück zum Zitat Nikolovski J, Mooney DJ (2000) Smooth muscle cell adhesion to tissue engineering scaffolds. Biomaterials 21:2025–2032PubMed Nikolovski J, Mooney DJ (2000) Smooth muscle cell adhesion to tissue engineering scaffolds. Biomaterials 21:2025–2032PubMed
163.
Zurück zum Zitat Kim B-S, Nikolovski J, Bonadio J, Smiley E, Mooney DJ (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res 251:318–328PubMed Kim B-S, Nikolovski J, Bonadio J, Smiley E, Mooney DJ (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res 251:318–328PubMed
164.
Zurück zum Zitat Kim B-S, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979–983PubMed Kim B-S, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979–983PubMed
165.
Zurück zum Zitat Agrawal CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38:105–114PubMed Agrawal CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38:105–114PubMed
166.
Zurück zum Zitat Wang Y, Wang W, Wang X, Wang Y, Wang J, Fu Q, Shi G (2017) Tissue-engineered sling with adipose-derived stem cells under static mechanical strain. Exp Ther Med 14:1337–1342PubMedPubMedCentral Wang Y, Wang W, Wang X, Wang Y, Wang J, Fu Q, Shi G (2017) Tissue-engineered sling with adipose-derived stem cells under static mechanical strain. Exp Ther Med 14:1337–1342PubMedPubMedCentral
167.
Zurück zum Zitat Aghdam RM, Najarian S, Shakhesi S, Khanlari S, Shaabani K, Sharifi S (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124:123–131 Aghdam RM, Najarian S, Shakhesi S, Khanlari S, Shaabani K, Sharifi S (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124:123–131
168.
Zurück zum Zitat Bailey MM, Wang L, Bode CJ, Mitchell KE, Detamore MS (2007) A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13:2003–2010PubMed Bailey MM, Wang L, Bode CJ, Mitchell KE, Detamore MS (2007) A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13:2003–2010PubMed
169.
Zurück zum Zitat Weiser B, Prantl L, Schubert TEO, Zellner J, Fischbach-Teschl C, Spruss T, Seitz AK, Tessmar J, Goepferich A, Blunk T (2008) In vivo development and long-term survival of engineered adipose tissue depend on in vitro precultivation strategy. Tissue Eng - Part A 14:275–284PubMed Weiser B, Prantl L, Schubert TEO, Zellner J, Fischbach-Teschl C, Spruss T, Seitz AK, Tessmar J, Goepferich A, Blunk T (2008) In vivo development and long-term survival of engineered adipose tissue depend on in vitro precultivation strategy. Tissue Eng - Part A 14:275–284PubMed
Metadaten
Titel
A review on synthesis and biomedical applications of polyglycolic acid
verfasst von
Kamil Budak
Oguz Sogut
Umran Aydemir Sezer
Publikationsdatum
01.08.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 8/2020
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02187-1

Weitere Artikel der Ausgabe 8/2020

Journal of Polymer Research 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.