Skip to main content
Erschienen in: Journal of Polymer Research 5/2023

01.05.2023 | Original Paper

Role of gamma irradiation on ion diffusion of PEO-NH4I based solid polymer electrolytes

verfasst von: Mou Saha, Tapas Kumar Ballabh, Ruma Ray

Erschienen in: Journal of Polymer Research | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes using a suitable proportion of high-energy radiation for property enhancement in solid polymer electrolytes (SPEs). Here, the effect of gamma irradiation has been investigated in proton-conducting SPEs prepared from host polymer Poly(ethylene)Oxide and the salt NH4I. Gamma radiation, combined with variation in salt concentration, modifies the structural, thermal and electrical properties of the SPE. High energy radiation produces scission and/or cross-linking of polymer molecules and changes the effective crystalline /amorphous proportion of the system. The microstructural analysis and variation in physicochemical properties within the specified range of irradiation dose (1 – 49 kGy) have been studied systematically in this article. Before irradiation, only varying salt concentration, maximum DC ionic conductivity (2.31 × 10–6 S/cm) of this two-phase (PEO–NH4I) SPE system is achieved at 12wt% NH4I at room temperature. Application of gamma irradiation enhances the conductivity almost by two orders of magnitude (2.06 × 10–4 S/cm) at 37 kGy at room temperature. Associated dielectric properties and underlying relaxation phenomena show corresponding variations. The ion transport mechanism is analysed in terms of energy-induced ion dissociation, modified carrier ions (n) and ease of mobility (μ) of the carrier ions through a more amorphous polymer substrate. This competing effect between n and μ nicely explains the contribution to the enhancement of ionic conductivity due to gamma radiation in SPEs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sequeira C, Santos D (2010) Polymer electrolytes: fundamentals and applications. ElsevierCrossRef Sequeira C, Santos D (2010) Polymer electrolytes: fundamentals and applications. ElsevierCrossRef
2.
Zurück zum Zitat Arya A, Sharma A (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540CrossRef Arya A, Sharma A (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540CrossRef
3.
Zurück zum Zitat Agrawal R, Pandey G (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001CrossRef Agrawal R, Pandey G (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001CrossRef
4.
Zurück zum Zitat Ayesh AS (2009) Dielectric properties of polyethylene oxide doped with NH4I salt. Polym J 41(8):616–621CrossRef Ayesh AS (2009) Dielectric properties of polyethylene oxide doped with NH4I salt. Polym J 41(8):616–621CrossRef
5.
Zurück zum Zitat Dhatarwal P, Sengwa R, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Composites Communications 5:1–7CrossRef Dhatarwal P, Sengwa R, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Composites Communications 5:1–7CrossRef
6.
Zurück zum Zitat Bhattacharya B, Lee JY, Geng J, Jung H-T, Park J-K (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25(5):3276–3281PubMedCrossRef Bhattacharya B, Lee JY, Geng J, Jung H-T, Park J-K (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25(5):3276–3281PubMedCrossRef
7.
Zurück zum Zitat Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohyd Polym 91(2):682–685CrossRef Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohyd Polym 91(2):682–685CrossRef
8.
Zurück zum Zitat Mohanta J, Anwar S, Si S (2016) Effects of silica nanostructures in poly (ethylene oxide)-based composite polymer electrolytes. J Nanosci Nanotechnol 16(6):6164–6172PubMedCrossRef Mohanta J, Anwar S, Si S (2016) Effects of silica nanostructures in poly (ethylene oxide)-based composite polymer electrolytes. J Nanosci Nanotechnol 16(6):6164–6172PubMedCrossRef
9.
Zurück zum Zitat Shenbagavalli S, Muthuvinayagam M, Revathy M (2022) Enhancement of electrical and electrochemical properties of sodium bromide incorporated with poly (ethylene oxide)/poly (vinylidene fluoride-hexafluoropropylene) solid blend polymer electrolytes for electrochemical double layer capacitors. Journal of Energy Storage 55:105726CrossRef Shenbagavalli S, Muthuvinayagam M, Revathy M (2022) Enhancement of electrical and electrochemical properties of sodium bromide incorporated with poly (ethylene oxide)/poly (vinylidene fluoride-hexafluoropropylene) solid blend polymer electrolytes for electrochemical double layer capacitors. Journal of Energy Storage 55:105726CrossRef
10.
Zurück zum Zitat Eriksson T, Mindemark J, Yue M, Brandell D (2019) Effects of nanoparticle addition to poly (ε-caprolactone) electrolytes: Crystallinity, conductivity and ambient temperature battery cycling. Electrochim Acta 300:489–496CrossRef Eriksson T, Mindemark J, Yue M, Brandell D (2019) Effects of nanoparticle addition to poly (ε-caprolactone) electrolytes: Crystallinity, conductivity and ambient temperature battery cycling. Electrochim Acta 300:489–496CrossRef
11.
Zurück zum Zitat Kumar M, Srivastava N (2015) Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system. Ionics 21(5):1301–1310CrossRef Kumar M, Srivastava N (2015) Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system. Ionics 21(5):1301–1310CrossRef
12.
Zurück zum Zitat Maurya K, Srivastava N, Hashmi S, Chandra S (1992) Proton conducting polymer electrolyte: II poly ethylene oxide+ NH 4 l system. J Mater Sci 27(23):6357–6364CrossRef Maurya K, Srivastava N, Hashmi S, Chandra S (1992) Proton conducting polymer electrolyte: II poly ethylene oxide+ NH 4 l system. J Mater Sci 27(23):6357–6364CrossRef
13.
Zurück zum Zitat Singh D, Bhattacharya B, Virk HS (2015) Conductivity Modulation in Polymer Electrolytes and their Composites due to Ion-Beam Irradiation. Solid State Phenomena. Trans Tech Publ, pp 110–148 Singh D, Bhattacharya B, Virk HS (2015) Conductivity Modulation in Polymer Electrolytes and their Composites due to Ion-Beam Irradiation. Solid State Phenomena. Trans Tech Publ, pp 110–148
14.
Zurück zum Zitat Raghu S, Devendrappa H, Ganesh S, Matteppanavar S (2022) Modification of PEO-based polymer electrolytes by electron beam irradiation for energy storage applications. Polym Bull 1–14 Raghu S, Devendrappa H, Ganesh S, Matteppanavar S (2022) Modification of PEO-based polymer electrolytes by electron beam irradiation for energy storage applications. Polym Bull 1–14
15.
Zurück zum Zitat Bhavsar S, Patel GB, Singh B, Singh F, Singh N (2022) A comparative study on gamma and carbon ion irradiations induced modification in structural and electrical properties of PVA/H3PO4/SiO2 nanocomposite polymer electrolyte. Radiat Phys Chem 192:109916CrossRef Bhavsar S, Patel GB, Singh B, Singh F, Singh N (2022) A comparative study on gamma and carbon ion irradiations induced modification in structural and electrical properties of PVA/H3PO4/SiO2 nanocomposite polymer electrolyte. Radiat Phys Chem 192:109916CrossRef
16.
Zurück zum Zitat Basu T, Tarafdar S (2016) Influence of gamma irradiation on the electrical properties of LiClO 4-gelatin solid polymer electrolytes: modelling anomalous diffusion through generalized calculus. Radiat Phys Chem 125:180–198CrossRef Basu T, Tarafdar S (2016) Influence of gamma irradiation on the electrical properties of LiClO 4-gelatin solid polymer electrolytes: modelling anomalous diffusion through generalized calculus. Radiat Phys Chem 125:180–198CrossRef
18.
Zurück zum Zitat Tarafdar S, De SK, Manna S, De U, Nanda P (2010) Variation in viscosity and ion conductivity of a polymer-salt complex exposed to gamma irradiation. Pramana J Phys 74(2):271–279CrossRef Tarafdar S, De SK, Manna S, De U, Nanda P (2010) Variation in viscosity and ion conductivity of a polymer-salt complex exposed to gamma irradiation. Pramana J Phys 74(2):271–279CrossRef
19.
Zurück zum Zitat Basu T, Giri A, Tarafdar S, Das S (2015) Electrical impedance response of gamma irradiated gelatin based solid polymer electrolytes analyzed using a generalized calculus formalism. J Electroanal Chem 755:52–62CrossRef Basu T, Giri A, Tarafdar S, Das S (2015) Electrical impedance response of gamma irradiated gelatin based solid polymer electrolytes analyzed using a generalized calculus formalism. J Electroanal Chem 755:52–62CrossRef
20.
Zurück zum Zitat Charlesby A (1960) In Atomic Radiation and Polymers Pergamon Press, Oxford, UK Charlesby A (1960) In Atomic Radiation and Polymers Pergamon Press, Oxford, UK
21.
Zurück zum Zitat Vincent CA (1987) Polymer electrolytes. Prog Solid State Chem 17(3):145–261CrossRef Vincent CA (1987) Polymer electrolytes. Prog Solid State Chem 17(3):145–261CrossRef
22.
Zurück zum Zitat Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X= Cl, Br, I). J Non-Cryst Solids 355(2):84–90CrossRef Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X= Cl, Br, I). J Non-Cryst Solids 355(2):84–90CrossRef
23.
Zurück zum Zitat Karan N, Pradhan D, Thomas R, Natesan B, Katiyar R (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF 3 SO 3): ionic conductivity and dielectric relaxation. Solid State Ionics 179(19):689–696CrossRef Karan N, Pradhan D, Thomas R, Natesan B, Katiyar R (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF 3 SO 3): ionic conductivity and dielectric relaxation. Solid State Ionics 179(19):689–696CrossRef
24.
Zurück zum Zitat Mustarelli P, Quartarone E, Tomasi C, Magistris A (2000) New materials for polymer electrolytes. Solid State Ionics 135(1):81–86CrossRef Mustarelli P, Quartarone E, Tomasi C, Magistris A (2000) New materials for polymer electrolytes. Solid State Ionics 135(1):81–86CrossRef
25.
Zurück zum Zitat Ibrahim S, Yasin SMM, Ahmad R, Johan MR (2012) Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Sci 14(8):1111–1116CrossRef Ibrahim S, Yasin SMM, Ahmad R, Johan MR (2012) Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Sci 14(8):1111–1116CrossRef
26.
Zurück zum Zitat Kim G-T, Appetecchi GB, Alessandrini F, Passerini S (2007) Solvent-free, PYR 1A TFSI ionic liquid-based ternary polymer electrolyte systems: I. Electrochemical characterization. J Power Sources 171(2):861–869CrossRef Kim G-T, Appetecchi GB, Alessandrini F, Passerini S (2007) Solvent-free, PYR 1A TFSI ionic liquid-based ternary polymer electrolyte systems: I. Electrochemical characterization. J Power Sources 171(2):861–869CrossRef
27.
Zurück zum Zitat Holcomb NR, Nixon PG, Gard GL, Nafshun RL, Lerner MM (1996) Synthesis of LiCH (SO 2 CF 3) 2 and ionic conductivity of polyether-salt complexes. J Electrochem Soc 143(4):1297–1300CrossRef Holcomb NR, Nixon PG, Gard GL, Nafshun RL, Lerner MM (1996) Synthesis of LiCH (SO 2 CF 3) 2 and ionic conductivity of polyether-salt complexes. J Electrochem Soc 143(4):1297–1300CrossRef
28.
Zurück zum Zitat Reddy CVS, Wu G, Zhao C, Jin W, Zhu Q, Chen W, Mho S-i (2007) Mesoporous silica (MCM-41) effect on (PEO+ LiAsF 6) solid polymer electrolyte. Curr Appl Phys 7(6):655–661CrossRef Reddy CVS, Wu G, Zhao C, Jin W, Zhu Q, Chen W, Mho S-i (2007) Mesoporous silica (MCM-41) effect on (PEO+ LiAsF 6) solid polymer electrolyte. Curr Appl Phys 7(6):655–661CrossRef
29.
Zurück zum Zitat Armand M, Gorecki WRA (1990) In: 2nd Int. Meeting on Polymer Electrolytes, New York. Amsterdam: Elsevier, p 91 Armand M, Gorecki WRA (1990) In: 2nd Int. Meeting on Polymer Electrolytes, New York. Amsterdam: Elsevier, p 91
30.
Zurück zum Zitat Chowdari B (1992) Solid State Ionics: Materials and Applications: 3rd Asian Conference: Papers. World Scientific Chowdari B (1992) Solid State Ionics: Materials and Applications: 3rd Asian Conference: Papers. World Scientific
31.
Zurück zum Zitat Hashmi S, Kumar A, Maurya K, Chandra S (1990) Proton-conducting polymer electrolyte. I. The polyethylene oxide+ NH4ClO4 system. J Phys D Appl Phys 23(10):1307CrossRef Hashmi S, Kumar A, Maurya K, Chandra S (1990) Proton-conducting polymer electrolyte. I. The polyethylene oxide+ NH4ClO4 system. J Phys D Appl Phys 23(10):1307CrossRef
32.
Zurück zum Zitat Appetecchi G, Passerini S (2002) Poly (ethylene oxide)-LiN (SO 2 CF 2 CF 3) 2 polymer electrolytes II. Characterization of the interface with lithium. J Electrochem Soc 149(7):A891–A897CrossRef Appetecchi G, Passerini S (2002) Poly (ethylene oxide)-LiN (SO 2 CF 2 CF 3) 2 polymer electrolytes II. Characterization of the interface with lithium. J Electrochem Soc 149(7):A891–A897CrossRef
33.
Zurück zum Zitat Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly(ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7(7):5798–5804 Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly(ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7(7):5798–5804
34.
Zurück zum Zitat Karan S, Sahu TB, Sahu M, Mahipal Y, Agrawal R (2017) Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films:[PEO: Zn (CF3SO3) 2]. Ionics 1–6 Karan S, Sahu TB, Sahu M, Mahipal Y, Agrawal R (2017) Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films:[PEO: Zn (CF3SO3) 2]. Ionics 1–6
35.
Zurück zum Zitat Barker R Jr, Thomas CR (1964) Effects of moisture and high electric fields on conductivity in alkali-halide-doped cellulose acetate. J Appl Phys 35(11):3203–3215CrossRef Barker R Jr, Thomas CR (1964) Effects of moisture and high electric fields on conductivity in alkali-halide-doped cellulose acetate. J Appl Phys 35(11):3203–3215CrossRef
36.
Zurück zum Zitat Dam T, Jena SS, Pradhan DK (2016) The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO 20-LiCF 3 SO 3 based ion conducting polymer clay composites. Phys Chem Chem Phys 18(29):19955–19965PubMedCrossRef Dam T, Jena SS, Pradhan DK (2016) The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO 20-LiCF 3 SO 3 based ion conducting polymer clay composites. Phys Chem Chem Phys 18(29):19955–19965PubMedCrossRef
37.
Zurück zum Zitat Arya A, Sharma A (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51(4):045504CrossRef Arya A, Sharma A (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51(4):045504CrossRef
40.
Zurück zum Zitat Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2015) The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J Non-Cryst Solids 426:55–62CrossRef Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2015) The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J Non-Cryst Solids 426:55–62CrossRef
42.
Zurück zum Zitat Saha M, Ray R, Choudhury AR, De Bhowmik P, Ballabh TK (2021) Impact of exfoliation/intercalation of nano-clay on structure, morphology and electrical properties of poly (ethylene oxide) based solid nanocomposite electrolytes. J Polym Res 28(8):1–21CrossRef Saha M, Ray R, Choudhury AR, De Bhowmik P, Ballabh TK (2021) Impact of exfoliation/intercalation of nano-clay on structure, morphology and electrical properties of poly (ethylene oxide) based solid nanocomposite electrolytes. J Polym Res 28(8):1–21CrossRef
43.
Zurück zum Zitat Kim C, Lee G, Liou K, Ryu KS, Kang S-G, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123(1):251–257CrossRef Kim C, Lee G, Liou K, Ryu KS, Kang S-G, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123(1):251–257CrossRef
45.
Zurück zum Zitat Dhatarwal P, Sengwa R (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24(9):1–10CrossRef Dhatarwal P, Sengwa R (2017) Dielectric and electrical characterization of (PEO–PMMA)–LiBF4–EC plasticized solid polymer electrolyte films. J Polym Res 24(9):1–10CrossRef
46.
Zurück zum Zitat Majid S, Arof A (2007) Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B 390(1):209–215CrossRef Majid S, Arof A (2007) Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B 390(1):209–215CrossRef
47.
Zurück zum Zitat Ghosh S, Ghosh A (2003) Relaxation dynamics of charge carriers in mixed alkali fluoride glasses. J Chem Phys 119(17):9106–9110CrossRef Ghosh S, Ghosh A (2003) Relaxation dynamics of charge carriers in mixed alkali fluoride glasses. J Chem Phys 119(17):9106–9110CrossRef
48.
Zurück zum Zitat Howell F, Bose R, Macedo P, Moynihan C (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78(6):639–648CrossRef Howell F, Bose R, Macedo P, Moynihan C (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78(6):639–648CrossRef
50.
Zurück zum Zitat Kumaran VS, Ng H, Ramesh S, Ramesh K, Vengadaesvaran B, Numan A (2018) The conductivity and dielectric studies of solid polymer electrolytes based on poly (acrylamide-co-acrylic acid) doped with sodium iodide. Ionics 1–7 Kumaran VS, Ng H, Ramesh S, Ramesh K, Vengadaesvaran B, Numan A (2018) The conductivity and dielectric studies of solid polymer electrolytes based on poly (acrylamide-co-acrylic acid) doped with sodium iodide. Ionics 1–7
51.
Zurück zum Zitat Thomas A, Abraham K, Thomas J, Saban K (2017) Electrical and dielectric behaviour of Na0. 5La0. 25Sm0. 25Cu3Ti4O12 ceramics investigated by impedance and modulus spectroscopy. Journal of Asian Ceramic Societies 5(1):56–61CrossRef Thomas A, Abraham K, Thomas J, Saban K (2017) Electrical and dielectric behaviour of Na0. 5La0. 25Sm0. 25Cu3Ti4O12 ceramics investigated by impedance and modulus spectroscopy. Journal of Asian Ceramic Societies 5(1):56–61CrossRef
52.
Zurück zum Zitat Prajakta Joge DK, Kanchan PS, Gondaliya N (2014) Effect of Al2O3 Concentration on Conductivity and Relaxation Properties of Two Different PVA-PEO Blend Systems: A Comparative Study. IOSR Journal of Applied Physics e-ISSN 2278–4861:55–58 Prajakta Joge DK, Kanchan PS, Gondaliya N (2014) Effect of Al2O3 Concentration on Conductivity and Relaxation Properties of Two Different PVA-PEO Blend Systems: A Comparative Study. IOSR Journal of Applied Physics e-ISSN 2278–4861:55–58
53.
Zurück zum Zitat Vasachar R, Bhajantri RF, Dhola PS, Sanjeev G (2015) Impact of electron-beam irradiation on free-volume related microstructural properties of PVA: NaBr polymer composites. Nucl Instrum Methods Phys Res, Sect B 342:29–38CrossRef Vasachar R, Bhajantri RF, Dhola PS, Sanjeev G (2015) Impact of electron-beam irradiation on free-volume related microstructural properties of PVA: NaBr polymer composites. Nucl Instrum Methods Phys Res, Sect B 342:29–38CrossRef
54.
Zurück zum Zitat Kumar H, Mathad R, Ganesh S, Sarma K, Haramaghatti C (2011) Electron-beam-induced modifications in high-density polyethylene. Braz J Phys 41(1):7–14CrossRef Kumar H, Mathad R, Ganesh S, Sarma K, Haramaghatti C (2011) Electron-beam-induced modifications in high-density polyethylene. Braz J Phys 41(1):7–14CrossRef
55.
Zurück zum Zitat Maitra M, Verma KC, Sinha M, Kumar R, Middya T, Tarafdar S, Sen P, Bandyopadhyay S, De U (2006) DSC characterization of ion beam modifications in ion conducting PEO–salt polymers. Nucl Instrum Methods Phys Res, Sect B 244(1):239–242CrossRef Maitra M, Verma KC, Sinha M, Kumar R, Middya T, Tarafdar S, Sen P, Bandyopadhyay S, De U (2006) DSC characterization of ion beam modifications in ion conducting PEO–salt polymers. Nucl Instrum Methods Phys Res, Sect B 244(1):239–242CrossRef
56.
Zurück zum Zitat Nanda P, De SK, Manna S, De U, Tarafdar S (2010) Effect of gamma irradiation on a polymer electrolyte: Variation in crystallinity, viscosity and ion-conductivity with dose. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268(1):73–78. https://doi.org/10.1016/j.nimb.2009.09.063CrossRef Nanda P, De SK, Manna S, De U, Tarafdar S (2010) Effect of gamma irradiation on a polymer electrolyte: Variation in crystallinity, viscosity and ion-conductivity with dose. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268(1):73–78. https://​doi.​org/​10.​1016/​j.​nimb.​2009.​09.​063CrossRef
57.
Zurück zum Zitat Singh TJ, Siddappa K, Bhat S (2004) Large enhancement of the ionic conductivity in an electron-beam-irradiated [poly (ethylene glycol)] xLiClO4 solid polymer electrolyte. J Polym Sci, Part B: Polym Phys 42(7):1299–1311CrossRef Singh TJ, Siddappa K, Bhat S (2004) Large enhancement of the ionic conductivity in an electron-beam-irradiated [poly (ethylene glycol)] xLiClO4 solid polymer electrolyte. J Polym Sci, Part B: Polym Phys 42(7):1299–1311CrossRef
58.
Zurück zum Zitat Joge P, Kanchan D, Sharma P, Jayswal M, Avasthi D (2014) Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte. Radiat Phys Chem 100:74–79CrossRef Joge P, Kanchan D, Sharma P, Jayswal M, Avasthi D (2014) Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte. Radiat Phys Chem 100:74–79CrossRef
Metadaten
Titel
Role of gamma irradiation on ion diffusion of PEO-NH4I based solid polymer electrolytes
verfasst von
Mou Saha
Tapas Kumar Ballabh
Ruma Ray
Publikationsdatum
01.05.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2023
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03561-5

Weitere Artikel der Ausgabe 5/2023

Journal of Polymer Research 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.