Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2017

15.06.2017 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Thermal properties of silica-coated cellulose fibers for increased fire-resistance

verfasst von: Joanna Mastalska-Popławska, Matteo Pernechele, Tom Troczynski, Piotr Izak

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, two precipitation methods of silica, i.e., sol–gel method and silica polymer precipitation, were compared in terms of their impact on the thermal properties of impregnated cellulose fibers. Additionally, the pre-treatment process consisting in dipping the cellulose fibers in NaOH solution to increase the fibers porosity was examined. Three molar phosphoric acid and Flodur 3 (ester hardener based on ethylene glycol diacetate) were used as the sol–gel precipitation agents and 20 wt% aqueous solution of sodium acrylate was used as the polymer precipitation agent. The silica provider was sodium water glass type D. The obtained results have shown that the silicate layer fully covered the cellulose fibers, as confirmed by the scanning electron microscope microphotographs and mid-infrared spectra. Even after thermal treatment at 700 °C, the silicate species still remained in the ash as confirmed by the infrared bands characteristic for sodium silicates, i.e., at 960 and 880 cm−1. Thermogravimetric analysis revealed no significant difference in the weight loss of the cellulose samples treated with different precipitation mixtures, as well as between the raw and pre-treated samples. All weight losses oscillated between 40–50 wt% at 700 °C. Differential thermal analysis curves showed that the pre-treatment process shifts the temperature range in which the different phenomena occur towards higher values. We believe that these results could contribute to the development of cellulose materials with enhanced thermal properties and the process could be an attractive substitute for coatings based on orthosilicates and their derivatives.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4445-5/MediaObjects/10971_2017_4445_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hatakeyama T, Hatakeyama H (2004) Thermal properties of green polymers and biocomposites. Kluwer Academic Publishers, Dordrecht Hatakeyama T, Hatakeyama H (2004) Thermal properties of green polymers and biocomposites. Kluwer Academic Publishers, Dordrecht
2.
Zurück zum Zitat Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Matters 28:3108–3114CrossRef Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Matters 28:3108–3114CrossRef
3.
Zurück zum Zitat Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 31:3293–3295CrossRef Deguchi S, Tsujii K, Horikoshi K (2006) Cooking cellulose in hot and compressed water. Chem Commun 31:3293–3295CrossRef
4.
Zurück zum Zitat van de Ven T, Godbout L (2013) Cellulose–fundamental aspects. InTech, Rijeka van de Ven T, Godbout L (2013) Cellulose–fundamental aspects. InTech, Rijeka
5.
Zurück zum Zitat Horrocks AR, Price D (2001) Fire retardant materials. CRC Press LLC, Boca Raton, FLCrossRef Horrocks AR, Price D (2001) Fire retardant materials. CRC Press LLC, Boca Raton, FLCrossRef
6.
Zurück zum Zitat Aggarwal P, Dollimore D, Heon K (1997) Comparative thermal analysis of two biopolymers, starch and cellulose. J Therm Analysis 50:7–17CrossRef Aggarwal P, Dollimore D, Heon K (1997) Comparative thermal analysis of two biopolymers, starch and cellulose. J Therm Analysis 50:7–17CrossRef
7.
Zurück zum Zitat Hribernik S, Smole MS, Kleinschek KS et al. (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibers. Polym Degrad Stab. 92:1957–1965CrossRef Hribernik S, Smole MS, Kleinschek KS et al. (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibers. Polym Degrad Stab. 92:1957–1965CrossRef
8.
Zurück zum Zitat Morgan AB, Wilkie CA (2007) Flame retardant polymer nanocomposites. Wiley, Hoboken, NJCrossRef Morgan AB, Wilkie CA (2007) Flame retardant polymer nanocomposites. Wiley, Hoboken, NJCrossRef
9.
Zurück zum Zitat Steplewski W, Kazmierczak J, Wawro D (2010) Novel method of preparing flame retardant cellulose-silicate fibers. Fibers Text East Eur 18:24–31 Steplewski W, Kazmierczak J, Wawro D (2010) Novel method of preparing flame retardant cellulose-silicate fibers. Fibers Text East Eur 18:24–31
10.
Zurück zum Zitat Qisi Y, Peiyi W, Peng X, Lei L et al. (2008) Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chem 10:1061–1067CrossRef Qisi Y, Peiyi W, Peng X, Lei L et al. (2008) Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chem 10:1061–1067CrossRef
11.
Zurück zum Zitat Uddin MJ, Cesano F, Bonino F et al. (2007) Photoactive TiO2 films on cellulose fibers: syntesis and characterization. J Photochem Photobiol A Chem 189:286–294CrossRef Uddin MJ, Cesano F, Bonino F et al. (2007) Photoactive TiO2 films on cellulose fibers: syntesis and characterization. J Photochem Photobiol A Chem 189:286–294CrossRef
12.
Zurück zum Zitat Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434CrossRef Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434CrossRef
13.
Zurück zum Zitat Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:20–25CrossRef Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:20–25CrossRef
14.
15.
Zurück zum Zitat Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112CrossRef Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112CrossRef
16.
Zurück zum Zitat Thin GP, Oliveira MAS, Oliveira EDA, Melo FCL (2000) Sol-gel silica film preparation from aqueous solutions for corrosion protection. J Non Cryst Solids 273:124–128CrossRef Thin GP, Oliveira MAS, Oliveira EDA, Melo FCL (2000) Sol-gel silica film preparation from aqueous solutions for corrosion protection. J Non Cryst Solids 273:124–128CrossRef
17.
Zurück zum Zitat Munoz-Aguado M-J, Gregorkiewitz M (1997) Sol–gel synthesis of microporous amorphous silica from purely inorganic precursors. J Colloid Interface Sci 185:459–465CrossRef Munoz-Aguado M-J, Gregorkiewitz M (1997) Sol–gel synthesis of microporous amorphous silica from purely inorganic precursors. J Colloid Interface Sci 185:459–465CrossRef
18.
Zurück zum Zitat Yanjun X, Xiaojun Y, Jinjin D (2007) Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Solgel Sci Technol 43:187–192CrossRef Yanjun X, Xiaojun Y, Jinjin D (2007) Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Solgel Sci Technol 43:187–192CrossRef
19.
Zurück zum Zitat Shang S-M, Li Z, Xing Y et al. (2010) Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes. Appl Surf Sci 257:1495–1499CrossRef Shang S-M, Li Z, Xing Y et al. (2010) Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes. Appl Surf Sci 257:1495–1499CrossRef
20.
Zurück zum Zitat Branda F, Malucelli G, Durante M et al. (2016) Silica treatments: a fire retardant strategy for hempfabric/epoxy composites. Polymers 8:1–17CrossRef Branda F, Malucelli G, Durante M et al. (2016) Silica treatments: a fire retardant strategy for hempfabric/epoxy composites. Polymers 8:1–17CrossRef
21.
Zurück zum Zitat Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloids Interface Sci 26:62–69CrossRef Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloids Interface Sci 26:62–69CrossRef
22.
Zurück zum Zitat Korehei R, Jahangiri P, Nikbakht A et al. (2016) Effects of drying strategies and microfibrillated cellulose fiber content on the properties of foam-formed paper. J Wood Chem Technol 36:235–249CrossRef Korehei R, Jahangiri P, Nikbakht A et al. (2016) Effects of drying strategies and microfibrillated cellulose fiber content on the properties of foam-formed paper. J Wood Chem Technol 36:235–249CrossRef
23.
Zurück zum Zitat Jahangiri P, Korehei R, Zeinoddini SS et al. (2014) On filtration and heat insulation properties of foam formed cellulose based materials. Nord Pulp Paper Res J 29:584–591CrossRef Jahangiri P, Korehei R, Zeinoddini SS et al. (2014) On filtration and heat insulation properties of foam formed cellulose based materials. Nord Pulp Paper Res J 29:584–591CrossRef
24.
Zurück zum Zitat Wang J, Fan Z, Wang H et al. (2006) An improved sodium silicate binder modified by ultra-fine powder materials. China Foundry 4:26–30 Wang J, Fan Z, Wang H et al. (2006) An improved sodium silicate binder modified by ultra-fine powder materials. China Foundry 4:26–30
25.
Zurück zum Zitat Stachowicz M, Granat K, Nowak D et al. (2010) Effect of hardening methods of molding sand with water glass on structure of bonding bridges. Arch Foundry Eng 10:123–128 Stachowicz M, Granat K, Nowak D et al. (2010) Effect of hardening methods of molding sand with water glass on structure of bonding bridges. Arch Foundry Eng 10:123–128
26.
Zurück zum Zitat Soares S, Ricardo NM, Jones S et al. (2001) High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur Polym J 37:737–745CrossRef Soares S, Ricardo NM, Jones S et al. (2001) High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid-state NMR. Eur Polym J 37:737–745CrossRef
27.
Zurück zum Zitat Rocha de Castro G, de Alcantara IL, dos Santos RP et al. (2004) Synthesis, characterization and determination of the metal ions adsorption capacity of cellulose modified with p-aminobenzoic groups. Mater Res 7:329–334CrossRef Rocha de Castro G, de Alcantara IL, dos Santos RP et al. (2004) Synthesis, characterization and determination of the metal ions adsorption capacity of cellulose modified with p-aminobenzoic groups. Mater Res 7:329–334CrossRef
28.
Zurück zum Zitat Falcone JS, Bass J et al. (2010) Characterizing the infrared bands of aqueous soluble silicates. J Phys Chem A 114:2438–2446CrossRef Falcone JS, Bass J et al. (2010) Characterizing the infrared bands of aqueous soluble silicates. J Phys Chem A 114:2438–2446CrossRef
29.
Zurück zum Zitat Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344CrossRef Handke M, Mozgawa W (1995) Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J Mol Struct 348:341–344CrossRef
30.
Zurück zum Zitat Sitarz M, Mozgawa W, Handke M (1999) Rings in the structure of silicate glasses. J Mol Struct 511:281–285CrossRef Sitarz M, Mozgawa W, Handke M (1999) Rings in the structure of silicate glasses. J Mol Struct 511:281–285CrossRef
31.
Zurück zum Zitat Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non Cryst Solids 201:177–198CrossRef Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non Cryst Solids 201:177–198CrossRef
32.
Zurück zum Zitat Vasiljevic J, Jerman I, Jaksa G et al. (2015) Functionalization of cellulose fibers with DOPO-polysilsesquioxane flame retardan nanocoating. Cellulose 22:1893–1910CrossRef Vasiljevic J, Jerman I, Jaksa G et al. (2015) Functionalization of cellulose fibers with DOPO-polysilsesquioxane flame retardan nanocoating. Cellulose 22:1893–1910CrossRef
33.
Zurück zum Zitat Rabek JF (2016) Modern knowledge of the polymers. PWN, Warsaw Rabek JF (2016) Modern knowledge of the polymers. PWN, Warsaw
34.
Zurück zum Zitat Pishavaei M, Farshchi Tabrizi F (2010) Synthesis of high solid content polyacrylate/ nanosilica latexes via miniemulsion polymerization. Iran Polym J 19:707–716 Pishavaei M, Farshchi Tabrizi F (2010) Synthesis of high solid content polyacrylate/ nanosilica latexes via miniemulsion polymerization. Iran Polym J 19:707–716
35.
Zurück zum Zitat Katsikis N, Zahradnik F, Helmschrott A et al. (2007) Thermal stability of poly(methyl methacrylate)/silica nano- and microcomposites as investigated by dynamic-mechanical experiments. Polym Degrad Stab 92:1966–1976CrossRef Katsikis N, Zahradnik F, Helmschrott A et al. (2007) Thermal stability of poly(methyl methacrylate)/silica nano- and microcomposites as investigated by dynamic-mechanical experiments. Polym Degrad Stab 92:1966–1976CrossRef
Metadaten
Titel
Thermal properties of silica-coated cellulose fibers for increased fire-resistance
verfasst von
Joanna Mastalska-Popławska
Matteo Pernechele
Tom Troczynski
Piotr Izak
Publikationsdatum
15.06.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4445-5

Weitere Artikel der Ausgabe 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Zur Ausgabe

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

A novel synthesis route of titania–alumina composite aerogels with potassium titanate as the precursor

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Influence of sol–gel derived strontium–cerium co-substitution in fluorohydroxyapatite and its in-vitro bioactivity

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Hydrophobic silica composite aerogels using poly(methyl methacrylate) by rapid supercritical extraction process

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Visible light-induced super-hydrophilic anatase porous thin film with easy-to-clean and antifogging properties

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Titania–silica hybrid films derived by a sol–gel process for organic field effect transistors

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.