Skip to main content
Erschienen in: Measurement Techniques 5/2015

01.08.2015

Estimation of Optimal Frequency of Spatial Modulation of the Radiation of 3D Measurements

verfasst von: S. V. Dvoinishnikov, V. G. Meledin, V. G. Glavnyi, I. V. Naumov, A. S. Chubov

Erschienen in: Measurement Techniques | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A method of estimating the optimum spatial modulation frequency of the radiation of 3D measurements based on phase triangulation and structured illumination is proposed. An algorithm for computing the optimal spatial frequency of an optical image created on the surface of an object which is being measured is developed. Experimental verification of the proposed method is carried out.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. V. Dvoinishnikov and V. G. Meledin, Patent 2433372 RF, “A method of contactless measurement of the linear dimensions of three-dimensional objects,” Izobret. Polezn. Modeli, No. 31 (2011). S. V. Dvoinishnikov and V. G. Meledin, Patent 2433372 RF, “A method of contactless measurement of the linear dimensions of three-dimensional objects,” Izobret. Polezn. Modeli, No. 31 (2011).
2.
Zurück zum Zitat E. S. Gesheva, I. V. Litvinov, S. I. Shtork, and S. V. Alekseenko, “Analyzing the aerodynamic structure of swirl flow in vortex burner models,” Therm. Eng., 61, No. 9, 649–657 (2014).CrossRefADS E. S. Gesheva, I. V. Litvinov, S. I. Shtork, and S. V. Alekseenko, “Analyzing the aerodynamic structure of swirl flow in vortex burner models,” Therm. Eng., 61, No. 9, 649–657 (2014).CrossRefADS
3.
Zurück zum Zitat I. K. Kabardin, V. V. Rakhmanov, V. G. Meledin, et al., “An optical method of measuring the instantaneous field of thickness of a liquid fi lm on the basis of total internal refl ection,” Teplofi z. Aeromekh., 19, 89–95 (2012). I. K. Kabardin, V. V. Rakhmanov, V. G. Meledin, et al., “An optical method of measuring the instantaneous field of thickness of a liquid fi lm on the basis of total internal refl ection,” Teplofi z. Aeromekh., 19, 89–95 (2012).
4.
Zurück zum Zitat S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng., 48, No. 2, 149–158 (2010).CrossRefADS S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng., 48, No. 2, 149–158 (2010).CrossRefADS
5.
Zurück zum Zitat S. Zhang, D. Weilde, and J. Oliver, “Superfast phase-shifting method for 3D shape measurement,” Opt. Express, 18, No. 9, 9684–9689 (2010).CrossRefADS S. Zhang, D. Weilde, and J. Oliver, “Superfast phase-shifting method for 3D shape measurement,” Opt. Express, 18, No. 9, 9684–9689 (2010).CrossRefADS
6.
Zurück zum Zitat H. Du and Z. Wang, “Three-dimensional shape measurement with arbitrarily arranged fringe projection profi lometry system,” Opt. Lett., 32, No. 16, 2438–2440 (2007).CrossRefADS H. Du and Z. Wang, “Three-dimensional shape measurement with arbitrarily arranged fringe projection profi lometry system,” Opt. Lett., 32, No. 16, 2438–2440 (2007).CrossRefADS
7.
Zurück zum Zitat S. V. Dvoinishnikov, D. V. Kulikov, and V. G. Meledin, “An opto-electronic method of contactless determination of the profile of the surface of complexly shaped three-dimensional objects,” Metrologiya, No. 4, 15–27 (2010). S. V. Dvoinishnikov, D. V. Kulikov, and V. G. Meledin, “An opto-electronic method of contactless determination of the profile of the surface of complexly shaped three-dimensional objects,” Metrologiya, No. 4, 15–27 (2010).
8.
Zurück zum Zitat M. Gruber and G. Hausler, “Simple, robust and accurate phase-measuring triangulation,” Optik, 89, No. 3, 118–122 (1992). M. Gruber and G. Hausler, “Simple, robust and accurate phase-measuring triangulation,” Optik, 89, No. 3, 118–122 (1992).
9.
Zurück zum Zitat V. I. Guzhov, “Practical elements of the process of phase measurement in interferometry,” Avtometriya, No. 5, 25–31 (1995). V. I. Guzhov, “Practical elements of the process of phase measurement in interferometry,” Avtometriya, No. 5, 25–31 (1995).
10.
Zurück zum Zitat V. I. Guzhov and Yu. N. Solodkin, “Analysis of the precision of the determination of the total phase difference in integral interferometers,” Avtometriya, No. 6, 24–30 (1992). V. I. Guzhov and Yu. N. Solodkin, “Analysis of the precision of the determination of the total phase difference in integral interferometers,” Avtometriya, No. 6, 24–30 (1992).
11.
Zurück zum Zitat S. V. Dvoinishnikov and K. V. Shpol’vind, “A method of optical phase triangulation with expanded dynamical range of measurement,” Current Questions in Thermophysics and Physical Hydrogaseodynamics: Proc. 10th Int. Conf. Young Scientists (2012), pp. 39–45. S. V. Dvoinishnikov and K. V. Shpol’vind, “A method of optical phase triangulation with expanded dynamical range of measurement,” Current Questions in Thermophysics and Physical Hydrogaseodynamics: Proc. 10th Int. Conf. Young Scientists (2012), pp. 39–45.
12.
Zurück zum Zitat S. Inokuchi, K. Sato, and F. Masuda, “Range-imaging system for 3D object recognition,” Proc. 7th Int. Conf. Pattern Recognition, Montreal, Canada (1984), pp. 806–808. S. Inokuchi, K. Sato, and F. Masuda, “Range-imaging system for 3D object recognition,” Proc. 7th Int. Conf. Pattern Recognition, Montreal, Canada (1984), pp. 806–808.
13.
Zurück zum Zitat T. Stahs and F. Wahl, “Fast and versatile range data acquisition,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Raleigh, North Carolina (1992), pp.1169–1174. T. Stahs and F. Wahl, “Fast and versatile range data acquisition,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Raleigh, North Carolina (1992), pp.1169–1174.
14.
Zurück zum Zitat E. Oppenheim, The Use of Digital Signal Processing [Russian translation], Mir, Moscow (1980). E. Oppenheim, The Use of Digital Signal Processing [Russian translation], Mir, Moscow (1980).
15.
Metadaten
Titel
Estimation of Optimal Frequency of Spatial Modulation of the Radiation of 3D Measurements
verfasst von
S. V. Dvoinishnikov
V. G. Meledin
V. G. Glavnyi
I. V. Naumov
A. S. Chubov
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 5/2015
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-015-0745-8

Weitere Artikel der Ausgabe 5/2015

Measurement Techniques 5/2015 Zur Ausgabe