Skip to main content
Erschienen in: Measurement Techniques 8/2021

28.01.2022

Realization of a New Definition of Kelvin on State Primary Standard of Temperature Unit Get 35-2021 in the Temperature Range from 0.3 To 273.16 K

verfasst von: V. G. Kytin, M. Yu. Ghavalyan, A. A. Petukhov, B. G. Potapov, Ya. E. Razhba, E. G. Aslanyan, A. N. Schipunov

Erschienen in: Measurement Techniques | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article describes the composition and metrological characteristics of the State Primary Standard of temperature unit – kelvin – in the range from 0.3 K to 273.16 K GET 35-2021. GET 35-2021 allows reproducing and disseminating the temperature unit in accordance with the definition of kelvin, accepted at the 26th General Conference on Weights and Measures (26th CGPM) in 2018. GET 35-2021 includes three installations of acoustic gas thermometry developed in 2012–2019, which are the primary means of measuring temperature in the ranges of 79–273.16 K, 4.2–80K, 268.16–273.16 K. Equipment for reproducing the reference points of the International Temperature Scale ITS-90 has been upgraded in order to improve the accuracy. Based on the studies performed, the uncertainty of reproducing the thermodynamic temperature and temperature according to ITS-90 has been calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. P. M. Steur and M. Durieux, “Constant-volume gas thermometry between 4 K and 100 K,” Metrologia, 23, No. 1, 1–18 (1986).ADSCrossRef P. P. M. Steur and M. Durieux, “Constant-volume gas thermometry between 4 K and 100 K,” Metrologia, 23, No. 1, 1–18 (1986).ADSCrossRef
2.
Zurück zum Zitat J. F. Schooley, “NBS/NIST gas thermometry from 0 to 660°C,” J. Res. Natl. Inst. Stan., 95, No. 3, 255–290 (1990).CrossRef J. F. Schooley, “NBS/NIST gas thermometry from 0 to 660°C,” J. Res. Natl. Inst. Stan., 95, No. 3, 255–290 (1990).CrossRef
3.
Zurück zum Zitat H. Preston-Thomas and C. G. M. Kirby, “Gas thermometer determinations of the thermodynamic temperature scale in the range –183°C to 100°C,” Metrologia, 4, No. 1, 30–40 (1968).ADSCrossRef H. Preston-Thomas and C. G. M. Kirby, “Gas thermometer determinations of the thermodynamic temperature scale in the range –183°C to 100°C,” Metrologia, 4, No. 1, 30–40 (1968).ADSCrossRef
4.
Zurück zum Zitat D. N. Astrov, L. B. Beliansky, Y. A. Dedikov, et al., “Precision gas thermometry between 2.5 K and 308 K,” Metrologia, 26, No. 3, 151–166 (1989).ADSCrossRef D. N. Astrov, L. B. Beliansky, Y. A. Dedikov, et al., “Precision gas thermometry between 2.5 K and 308 K,” Metrologia, 26, No. 3, 151–166 (1989).ADSCrossRef
5.
Zurück zum Zitat R. Rusby, D. Head, C. Meyer, et al., “Final Report on CCT-K1: Realizations of the ITS-90, 0.65 K to 24.5561 K, using rhodium–iron resistance thermometers,” Metrologia, 43, No. 1A, 03002 (2006).ADSCrossRef R. Rusby, D. Head, C. Meyer, et al., “Final Report on CCT-K1: Realizations of the ITS-90, 0.65 K to 24.5561 K, using rhodium–iron resistance thermometers,” Metrologia, 43, No. 1A, 03002 (2006).ADSCrossRef
6.
Zurück zum Zitat G. Benedetto, R. M. Gavioso, R. Spagnolo, et al., “Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K,” Metrologia, 41, No. 1, 74–98 (2004).ADSCrossRef G. Benedetto, R. M. Gavioso, R. Spagnolo, et al., “Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K,” Metrologia, 41, No. 1, 74–98 (2004).ADSCrossRef
7.
Zurück zum Zitat L. Pitre, M. R. Moldover, and W. L. Tew, “Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K,” Metrologia, 43, No. 1, 142–162 (2006).ADSCrossRef L. Pitre, M. R. Moldover, and W. L. Tew, “Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K,” Metrologia, 43, No. 1, 142–162 (2006).ADSCrossRef
8.
Zurück zum Zitat M. R. Moldover, R. M. Gavioso, J. B. Mehl, et al., “Acoustic gas thermometry,” Metrologia, 51, No. 1, R1 (2014).CrossRef M. R. Moldover, R. M. Gavioso, J. B. Mehl, et al., “Acoustic gas thermometry,” Metrologia, 51, No. 1, R1 (2014).CrossRef
9.
Zurück zum Zitat L. Pitre, L. Risegari, F. Sparasci, et al., “Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water,” Metrologia, 52, No. 5, S263–S273 (2015).CrossRef L. Pitre, L. Risegari, F. Sparasci, et al., “Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water,” Metrologia, 52, No. 5, S263–S273 (2015).CrossRef
10.
Zurück zum Zitat R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “A determination of the molar gas constant R by acoustic thermometry in helium,” Metrologia, 52, No. 5, S274–S304 (2015).CrossRef R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “A determination of the molar gas constant R by acoustic thermometry in helium,” Metrologia, 52, No. 5, S274–S304 (2015).CrossRef
11.
Zurück zum Zitat M. de Podesta, R. Underwood, G. Sutton, et al., “A low-uncertainty measurement of the Boltzmann constant,” Metrologia, 50, No. 4, 354–376 (2013).ADSCrossRef M. de Podesta, R. Underwood, G. Sutton, et al., “A low-uncertainty measurement of the Boltzmann constant,” Metrologia, 50, No. 4, 354–376 (2013).ADSCrossRef
12.
Zurück zum Zitat R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “Determination of the thermodynamic temperature between 236 K and 430 K from speed of sound measurements in helium,” Metrologia, 56, No. 4, 045006 (2019).ADSCrossRef R. M. Gavioso, D. M. Ripa, P. P. M. Steur, et al., “Determination of the thermodynamic temperature between 236 K and 430 K from speed of sound measurements in helium,” Metrologia, 56, No. 4, 045006 (2019).ADSCrossRef
13.
Zurück zum Zitat V. G. Kytin, G. A. Kytin, M. Yu. Ghavalyan, et al., “Deviation of temperature determined by ITS-90 temperature scale from thermodynamic temperature measured by acoustic gas thermometry at 79.0000 K and at 83.8058 K,” Int. J. Thermophys., 41, No. 6, 88 (2020).ADSCrossRef V. G. Kytin, G. A. Kytin, M. Yu. Ghavalyan, et al., “Deviation of temperature determined by ITS-90 temperature scale from thermodynamic temperature measured by acoustic gas thermometry at 79.0000 K and at 83.8058 K,” Int. J. Thermophys., 41, No. 6, 88 (2020).ADSCrossRef
14.
Zurück zum Zitat S. M. Osadchii, B. G. Potapov, and K. D. Pilipenko, “Acoustic gas thermometer for the implementation of a new definition of kelvin based on the fundamental physical Boltzmann constant,” Alman. Sovr. Metrol., No. 12, 15–39 (2017). S. M. Osadchii, B. G. Potapov, and K. D. Pilipenko, “Acoustic gas thermometer for the implementation of a new definition of kelvin based on the fundamental physical Boltzmann constant,” Alman. Sovr. Metrol., No. 12, 15–39 (2017).
15.
Zurück zum Zitat S. M. Osadchii, B. G. Potapov, K. D. Pilipenko, et al., “Measurement of the Boltzmann constant in a quasispherical acoustic resonator,” Izmer. Tekhn., No. 7, 8–13 (2017). S. M. Osadchii, B. G. Potapov, K. D. Pilipenko, et al., “Measurement of the Boltzmann constant in a quasispherical acoustic resonator,” Izmer. Tekhn., No. 7, 8–13 (2017).
16.
Zurück zum Zitat V. G. Kytin, M. Yu. Ghavalyan, B. G. Potapov, et al., “Relative acoustic gas thermometry installation for low temperature range from 4.2 to 80 K,” Izmer. Tekhn., No. 1, 45–52 (2020). V. G. Kytin, M. Yu. Ghavalyan, B. G. Potapov, et al., “Relative acoustic gas thermometry installation for low temperature range from 4.2 to 80 K,” Izmer. Tekhn., No. 1, 45–52 (2020).
17.
Zurück zum Zitat S. M. Osadchii, B. G. Potapov, A. A. Petukhov, et al., “Realization of the triple point of oxygen for capsule-type thermometers,” Alman. Sovr. Metrol., No. 1 (21), 136–147 (2020). S. M. Osadchii, B. G. Potapov, A. A. Petukhov, et al., “Realization of the triple point of oxygen for capsule-type thermometers,” Alman. Sovr. Metrol., No. 1 (21), 136–147 (2020).
Metadaten
Titel
Realization of a New Definition of Kelvin on State Primary Standard of Temperature Unit Get 35-2021 in the Temperature Range from 0.3 To 273.16 K
verfasst von
V. G. Kytin
M. Yu. Ghavalyan
A. A. Petukhov
B. G. Potapov
Ya. E. Razhba
E. G. Aslanyan
A. N. Schipunov
Publikationsdatum
28.01.2022
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 8/2021
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-021-01980-8

Weitere Artikel der Ausgabe 8/2021

Measurement Techniques 8/2021 Zur Ausgabe