Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2010

01.05.2010 | Research paper

Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection

verfasst von: Uğur Tamer, Yusuf Gündoğdu, İsmail Hakkı Boyacı, Kadir Pekmez

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV–Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4–Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ban Z, Barnaov YA, Li F, Golup VO, O’Conner CJ (2005) The synthesis of core shell iron@gold nanoparticles and their characterization. J Mater Chem 15:4660–4662CrossRef Ban Z, Barnaov YA, Li F, Golup VO, O’Conner CJ (2005) The synthesis of core shell iron@gold nanoparticles and their characterization. J Mater Chem 15:4660–4662CrossRef
Zurück zum Zitat Brown LO, Hutchison JE (1997) Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119(50):12384–12385CrossRef Brown LO, Hutchison JE (1997) Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119(50):12384–12385CrossRef
Zurück zum Zitat Brown LO, Hutchison JE (1999) Controlled growth of gold nanoparticles during ligand exchange. J Am Chem Soc 121(4):882–883CrossRef Brown LO, Hutchison JE (1999) Controlled growth of gold nanoparticles during ligand exchange. J Am Chem Soc 121(4):882–883CrossRef
Zurück zum Zitat Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225(1–2):17–20CrossRefADS Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225(1–2):17–20CrossRefADS
Zurück zum Zitat Carpenter EE, Kumbhar A, Wiemann JA, Srikanth H, Wiggins J, Zhou W et al (2000) Synthesis and magnetic properties of gold-iron-gold nanocomposites. Mater Sci Eng A 286(1):81–86CrossRef Carpenter EE, Kumbhar A, Wiemann JA, Srikanth H, Wiggins J, Zhou W et al (2000) Synthesis and magnetic properties of gold-iron-gold nanocomposites. Mater Sci Eng A 286(1):81–86CrossRef
Zurück zum Zitat Chamberlin RV, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Magnetic relaxation of iron nanoparticles. J Appl Phys 91(10):6961–6963CrossRefADS Chamberlin RV, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Magnetic relaxation of iron nanoparticles. J Appl Phys 91(10):6961–6963CrossRefADS
Zurück zum Zitat Chen M, Nikles DE (1999) Chain-of-cubes iron nanoparticles prepared by borohydride reduction of acicular akaganeite particles. J Appl Phys 85(8):5504–5506CrossRefADS Chen M, Nikles DE (1999) Chain-of-cubes iron nanoparticles prepared by borohydride reduction of acicular akaganeite particles. J Appl Phys 85(8):5504–5506CrossRefADS
Zurück zum Zitat Chen M, Yamamuro S, Farrell D, Majetich SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93(10):7551–7553CrossRefADS Chen M, Yamamuro S, Farrell D, Majetich SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93(10):7551–7553CrossRefADS
Zurück zum Zitat Chilkoti A, Stayton PS (1995) Molecular-origins of the slow streptavidin-biotin dissociation kinetics. J Am Chem Soc 117(43):10622–10628CrossRef Chilkoti A, Stayton PS (1995) Molecular-origins of the slow streptavidin-biotin dissociation kinetics. J Am Chem Soc 117(43):10622–10628CrossRef
Zurück zum Zitat Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17(12):3181–3186CrossRef Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17(12):3181–3186CrossRef
Zurück zum Zitat Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255CrossRefPubMed Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255CrossRefPubMed
Zurück zum Zitat Gu HW, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126(18):5664–5665CrossRefPubMed Gu HW, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126(18):5664–5665CrossRefPubMed
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefPubMed Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefPubMed
Zurück zum Zitat Heitsch AT, Smith DK, Patel RN, Ress D, Korgel BA (2008) Multifunctional particles: magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J Solid State Chem 181(7):1590–1599CrossRefPubMedADS Heitsch AT, Smith DK, Patel RN, Ress D, Korgel BA (2008) Multifunctional particles: magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J Solid State Chem 181(7):1590–1599CrossRefPubMedADS
Zurück zum Zitat Hosseinkhani H (2006) DNA nanoparticles for gene delivery to cells and tissue. Int J Nanotechnol 3(4):416–461CrossRef Hosseinkhani H (2006) DNA nanoparticles for gene delivery to cells and tissue. Int J Nanotechnol 3(4):416–461CrossRef
Zurück zum Zitat Hosseinkhani H, Hosseinkhani M (2009) Biodegradable polymer-metal complexes for gene and drug delivery. Curr Drug Saf 4(1):79–83CrossRefPubMed Hosseinkhani H, Hosseinkhani M (2009) Biodegradable polymer-metal complexes for gene and drug delivery. Curr Drug Saf 4(1):79–83CrossRefPubMed
Zurück zum Zitat Hosseinkhani H, Tabata Y (2006) Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J Nanosci Nanotechnol 6(8):2320–2328CrossRefPubMed Hosseinkhani H, Tabata Y (2006) Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J Nanosci Nanotechnol 6(8):2320–2328CrossRefPubMed
Zurück zum Zitat Hosseinkhani H, Aoyamaa T, Ogawab O, Tabataa Y (2003) Tumor targeting of gene expression through metal-coordinated conjugation with dextran. J Control Release 88:297–312CrossRefPubMed Hosseinkhani H, Aoyamaa T, Ogawab O, Tabataa Y (2003) Tumor targeting of gene expression through metal-coordinated conjugation with dextran. J Control Release 88:297–312CrossRefPubMed
Zurück zum Zitat Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85:47–60PubMed Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85:47–60PubMed
Zurück zum Zitat Jeong J, Ha TH, Chung BH (2006) Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal Chim Acta 569(1–2):203–209CrossRef Jeong J, Ha TH, Chung BH (2006) Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal Chim Acta 569(1–2):203–209CrossRef
Zurück zum Zitat Kalinin NL, Ward LD, Winzor DJ (1995) Effects of solute multivalence on the evaluation of binding constants by biosensor technology-studies with concanavalin-a and interleukin-6 as partitioning proteins. J Anal Biochem 228(2):238–244CrossRef Kalinin NL, Ward LD, Winzor DJ (1995) Effects of solute multivalence on the evaluation of binding constants by biosensor technology-studies with concanavalin-a and interleukin-6 as partitioning proteins. J Anal Biochem 228(2):238–244CrossRef
Zurück zum Zitat Lee S, Perez Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77(22):7204–7211CrossRefPubMed Lee S, Perez Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77(22):7204–7211CrossRefPubMed
Zurück zum Zitat Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMed Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMed
Zurück zum Zitat Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31CrossRefADS Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31CrossRefADS
Zurück zum Zitat Lu Y, Yin YD, Mayers BT, Xia YN (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186CrossRefADS Lu Y, Yin YD, Mayers BT, Xia YN (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186CrossRefADS
Zurück zum Zitat Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723CrossRefADS Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723CrossRefADS
Zurück zum Zitat Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1–2):1–34CrossRef Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1–2):1–34CrossRef
Zurück zum Zitat Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM et al (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286(1):187–194CrossRefPubMed Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM et al (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286(1):187–194CrossRefPubMed
Zurück zum Zitat Meldrum FC, Heywood BR, Mann S (1992) Magnetoferritin—in vitro synthesis of a novel magnetic protein. Science 257(5069):522–523CrossRefPubMedADS Meldrum FC, Heywood BR, Mann S (1992) Magnetoferritin—in vitro synthesis of a novel magnetic protein. Science 257(5069):522–523CrossRefPubMedADS
Zurück zum Zitat Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalatos T et al (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477CrossRefPubMed Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalatos T et al (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477CrossRefPubMed
Zurück zum Zitat Pham TTH, Cao C, Sim SJ (2008) Application of citrate-stabilized gold coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055CrossRefADS Pham TTH, Cao C, Sim SJ (2008) Application of citrate-stabilized gold coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055CrossRefADS
Zurück zum Zitat Seo WS, Lee JH, Sun XM, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, Mcconnell MV, Niohimura DG, Dai HJ (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976CrossRefPubMedADS Seo WS, Lee JH, Sun XM, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, Mcconnell MV, Niohimura DG, Dai HJ (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976CrossRefPubMedADS
Zurück zum Zitat Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48CrossRef Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48CrossRef
Zurück zum Zitat Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proc Nanobiotechnol 152(1):13–32CrossRefPubMed Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proc Nanobiotechnol 152(1):13–32CrossRefPubMed
Zurück zum Zitat Subramani K, Hosseinkhani H, Khraisat A, Hosseinkhani M, Pathak Y (2009) Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 5(2):134–140CrossRef Subramani K, Hosseinkhani H, Khraisat A, Hosseinkhani M, Pathak Y (2009) Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 5(2):134–140CrossRef
Zurück zum Zitat Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992CrossRefPubMedADS Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992CrossRefPubMedADS
Zurück zum Zitat Tanaka T, Matsunaya T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72(15):3518–3522CrossRefPubMed Tanaka T, Matsunaya T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72(15):3518–3522CrossRefPubMed
Zurück zum Zitat Ugelstad J, Mork PC, Kaggerud KH, Ellingsen T, Berge A (1980) Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions. Adv Colloid Interface Sci 13(1–2):101–140CrossRef Ugelstad J, Mork PC, Kaggerud KH, Ellingsen T, Berge A (1980) Swelling of oligomer-polymer particles. New methods of preparation of emulsions and polymer dispersions. Adv Colloid Interface Sci 13(1–2):101–140CrossRef
Zurück zum Zitat Wang LY, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH et al (2005a) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15(18):1821–1832CrossRef Wang LY, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH et al (2005a) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15(18):1821–1832CrossRef
Zurück zum Zitat Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin YH, Kim N, Wang JQ, Zhong CJ (2005b) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109(46):21593–21601CrossRefPubMed Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin YH, Kim N, Wang JQ, Zhong CJ (2005b) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109(46):21593–21601CrossRefPubMed
Zurück zum Zitat Warner MG, Reed SM, Hutchision JE (2000) Small, water-soluble, ligand-stabilized gold nanoparticles synthesized by interfacial ligand exchange reactions. Chem Mater 12(11):3316–3320CrossRef Warner MG, Reed SM, Hutchision JE (2000) Small, water-soluble, ligand-stabilized gold nanoparticles synthesized by interfacial ligand exchange reactions. Chem Mater 12(11):3316–3320CrossRef
Zurück zum Zitat Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122(51):12890–12891CrossRef Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122(51):12890–12891CrossRef
Zurück zum Zitat Weissledel R, Moure A, Mahmood U, Bhorade R, Benveniste M, Chiocca E et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355CrossRef Weissledel R, Moure A, Mahmood U, Bhorade R, Benveniste M, Chiocca E et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355CrossRef
Zurück zum Zitat Widder KJ, Senge AE, Ranney DF (1980) Invitro release of biologically-active adriamycin by magnetically responsive albumin microspheres. Cancer Res 40(10):3512–3517PubMed Widder KJ, Senge AE, Ranney DF (1980) Invitro release of biologically-active adriamycin by magnetically responsive albumin microspheres. Cancer Res 40(10):3512–3517PubMed
Zurück zum Zitat Xu H, Cui L, Tong N, Gu H (2006) Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J Am Chem Soc 128(49):15582–15583CrossRefPubMed Xu H, Cui L, Tong N, Gu H (2006) Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J Am Chem Soc 128(49):15582–15583CrossRefPubMed
Zurück zum Zitat Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefPubMed Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefPubMed
Zurück zum Zitat Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au-Fe3O4 Dumbbell nanoparticles as dual functional probes. Angew Chem Int Ed 47:173–176CrossRef Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au-Fe3O4 Dumbbell nanoparticles as dual functional probes. Angew Chem Int Ed 47:173–176CrossRef
Zurück zum Zitat Yamazaki M, Ito M (1990) Deformation and instability in membrane-structure of phospholipid-vesicles caused by osmophobic association mechanical-stress model for the mechanism of poly(ethylene glycol)-induced membrane-fusion. Biochemistry 29(5):1309–1314CrossRefPubMed Yamazaki M, Ito M (1990) Deformation and instability in membrane-structure of phospholipid-vesicles caused by osmophobic association mechanical-stress model for the mechanism of poly(ethylene glycol)-induced membrane-fusion. Biochemistry 29(5):1309–1314CrossRefPubMed
Zurück zum Zitat Yonezawa T, Yasui K, Kimizuka N (2001) Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer. Langmuir 17(2):271–273CrossRef Yonezawa T, Yasui K, Kimizuka N (2001) Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer. Langmuir 17(2):271–273CrossRef
Zurück zum Zitat Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561CrossRefPubMed Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561CrossRefPubMed
Zurück zum Zitat Zhao MQ, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120(19):4877–4878CrossRef Zhao MQ, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120(19):4877–4878CrossRef
Zurück zum Zitat Zhou WL, Carpenter EE, Lin J, Kumbhar A, Sims J, O’Conner CJ (2001) Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field. Eur Phys J D 16(1–3):289–292CrossRefADS Zhou WL, Carpenter EE, Lin J, Kumbhar A, Sims J, O’Conner CJ (2001) Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field. Eur Phys J D 16(1–3):289–292CrossRefADS
Metadaten
Titel
Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection
verfasst von
Uğur Tamer
Yusuf Gündoğdu
İsmail Hakkı Boyacı
Kadir Pekmez
Publikationsdatum
01.05.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9749-0

Weitere Artikel der Ausgabe 4/2010

Journal of Nanoparticle Research 4/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.