Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2010

01.05.2010 | Research Paper

Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

verfasst von: Sašo Gyergyek, Darko Makovec, Alojz Kodre, Iztok Arčon, Marko Jagodič, Miha Drofenik

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Co–ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 °C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 °C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (~CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (~Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles’ composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Chartier dit Moulin C, Brice S, Sainctavit P (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345&346:658–662CrossRef Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Chartier dit Moulin C, Brice S, Sainctavit P (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345&346:658–662CrossRef
Zurück zum Zitat Arčon I, Kolar J, Kodre A, Hanžel D, Strlič M (2007) XANES analysis of Fe valence in iron gall inks. X-ray spectrom 36:199–205CrossRef Arčon I, Kolar J, Kodre A, Hanžel D, Strlič M (2007) XANES analysis of Fe valence in iron gall inks. X-ray spectrom 36:199–205CrossRef
Zurück zum Zitat Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32CrossRef Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32CrossRef
Zurück zum Zitat Batlle X, Labarta A (2002) Finite-size effect in fine particles: magnetic and transport properties. J Phys D 35:R15–R42CrossRefADS Batlle X, Labarta A (2002) Finite-size effect in fine particles: magnetic and transport properties. J Phys D 35:R15–R42CrossRefADS
Zurück zum Zitat Calvin S, Carpenter EE, Ravel B, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B66:224405-1–224405-13 Calvin S, Carpenter EE, Ravel B, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B66:224405-1–224405-13
Zurück zum Zitat Carpenter EE, O’Connor CJ, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177CrossRefADS Carpenter EE, O’Connor CJ, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177CrossRefADS
Zurück zum Zitat Cullity BD (1987) Elements of X-ray diffraction. Addison-Wesley, Reading Cullity BD (1987) Elements of X-ray diffraction. Addison-Wesley, Reading
Zurück zum Zitat Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St. Louis Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St. Louis
Zurück zum Zitat Fontjin WFJ, van der Zaag PJ, Feiner LF, Metselaar R, Devillers MAC (1999) A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J Appl Phys 85:5100–5105CrossRefADS Fontjin WFJ, van der Zaag PJ, Feiner LF, Metselaar R, Devillers MAC (1999) A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J Appl Phys 85:5100–5105CrossRefADS
Zurück zum Zitat Franco A, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3-x)O4. J Magn Magn Mater 320:709–713CrossRefADS Franco A, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3-x)O4. J Magn Magn Mater 320:709–713CrossRefADS
Zurück zum Zitat Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefPubMed Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefPubMed
Zurück zum Zitat Häfeli U, Schüt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Plenum, New York Häfeli U, Schüt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Plenum, New York
Zurück zum Zitat Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857CrossRefADS Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857CrossRefADS
Zurück zum Zitat Jeyadevan B, Tohji T, Nakatsuka KJ (1994) Structure-analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine-structure. Appl Phys 76:6325–6327CrossRef Jeyadevan B, Tohji T, Nakatsuka KJ (1994) Structure-analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine-structure. Appl Phys 76:6325–6327CrossRef
Zurück zum Zitat Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81:563–566CrossRefADS Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81:563–566CrossRefADS
Zurück zum Zitat Li S, John VT, O’Connor, Harris VG, Carpenter E (2000) Cobalt ferrite nanoparticles: Structure, cation distributions and magnetic properties. J Appl Phys 87:6223–6225CrossRefADS Li S, John VT, O’Connor, Harris VG, Carpenter E (2000) Cobalt ferrite nanoparticles: Structure, cation distributions and magnetic properties. J Appl Phys 87:6223–6225CrossRefADS
Zurück zum Zitat Makovec D, Drofenik M (2008) Non-stoichiometric zinc–ferrite spinel nanoparticles. J Nanopart Res 10:131–141CrossRef Makovec D, Drofenik M (2008) Non-stoichiometric zinc–ferrite spinel nanoparticles. J Nanopart Res 10:131–141CrossRef
Zurück zum Zitat Makovec D, Košak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology 15:S160–S166CrossRefADS Makovec D, Košak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology 15:S160–S166CrossRefADS
Zurück zum Zitat Makovec D, Kodre A, Arčon I, Drofenik M (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158CrossRef Makovec D, Kodre A, Arčon I, Drofenik M (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158CrossRef
Zurück zum Zitat Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395CrossRefADS Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395CrossRefADS
Zurück zum Zitat Mosbach K, Schröder U (1979) Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett 102:112–116CrossRefPubMed Mosbach K, Schröder U (1979) Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett 102:112–116CrossRefPubMed
Zurück zum Zitat Pankhurst QA, Conolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefADS Pankhurst QA, Conolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefADS
Zurück zum Zitat Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale synthesis of monodispersed nanocrystals. Nature Mater 3:891–895CrossRefADS Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale synthesis of monodispersed nanocrystals. Nature Mater 3:891–895CrossRefADS
Zurück zum Zitat Pelton AD, Schmalzried H, Sticher J (1979) Thermodynamics of Mn3O4–Co3O4, Fe3O4–Mn3O4, and Fe3O4–Co3O4 spinels by phase-diagram analysis. Ber Bunsen-Ges Phys Chem 83:241–252 Pelton AD, Schmalzried H, Sticher J (1979) Thermodynamics of Mn3O4–Co3O4, Fe3O4–Mn3O4, and Fe3O4–Co3O4 spinels by phase-diagram analysis. Ber Bunsen-Ges Phys Chem 83:241–252
Zurück zum Zitat Pileni MP (1993) Reverse miceles as microreactors. J Phys Chem 97:6961–6973CrossRef Pileni MP (1993) Reverse miceles as microreactors. J Phys Chem 97:6961–6973CrossRef
Zurück zum Zitat Ravel B, Newville M (2005) ATENA, ARTHEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefPubMed Ravel B, Newville M (2005) ATENA, ARTHEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefPubMed
Zurück zum Zitat Rosenweig R (1932) Ferrohydrodynamics. Cambridge University Press, Cambridge Rosenweig R (1932) Ferrohydrodynamics. Cambridge University Press, Cambridge
Zurück zum Zitat Salazar-Alvarez G, Olsson RT, Sort J, Macedo AA, Ardisson JD, Baró MD, Gedde UW, Nogués J (2007) Enhanced coercivity in Co-rich near-stoichiometric Co x Fe3-x O4+δ nanoparticles prepared in large batches. Chem Mater 19:4957–4963CrossRef Salazar-Alvarez G, Olsson RT, Sort J, Macedo AA, Ardisson JD, Baró MD, Gedde UW, Nogués J (2007) Enhanced coercivity in Co-rich near-stoichiometric Co x Fe3-x O4+δ nanoparticles prepared in large batches. Chem Mater 19:4957–4963CrossRef
Zurück zum Zitat Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A50:13–16ADS Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A50:13–16ADS
Zurück zum Zitat Senyei A, Widder K, Czerlinski C (1978) Magnetic guidance of drug-carrying microspheres. J Appl Phys 49:3578–3583CrossRefADS Senyei A, Widder K, Czerlinski C (1978) Magnetic guidance of drug-carrying microspheres. J Appl Phys 49:3578–3583CrossRefADS
Zurück zum Zitat Sivakumar N, Narayanasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM (2007) Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J Appl Phys 102:013916 1-8 Sivakumar N, Narayanasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM (2007) Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J Appl Phys 102:013916 1-8
Zurück zum Zitat Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven, The Netherlands Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven, The Netherlands
Zurück zum Zitat Sugimoto T (2001) Monodispersed particles. Elsevier science, Amsterdam Sugimoto T (2001) Monodispersed particles. Elsevier science, Amsterdam
Zurück zum Zitat Sun S, Zeng H, Robinson DB, Raux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefPubMed Sun S, Zeng H, Robinson DB, Raux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefPubMed
Zurück zum Zitat Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRef Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRef
Zurück zum Zitat Veverka M, Veverka P, Kaman O, Lancok A, Zaveta K, Pollert E, Knizek K, Bohacek J, Benes M, Kaspar P, Duguet E, Vasseur S (2007) Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18:345704 1-7 Veverka M, Veverka P, Kaman O, Lancok A, Zaveta K, Pollert E, Knizek K, Bohacek J, Benes M, Kaspar P, Duguet E, Vasseur S (2007) Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18:345704 1-7
Zurück zum Zitat Widder KJ, Senyei AE, Scrapelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Bio Exp Biol Med 58:141–146 Widder KJ, Senyei AE, Scrapelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Bio Exp Biol Med 58:141–146
Metadaten
Titel
Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles
verfasst von
Sašo Gyergyek
Darko Makovec
Alojz Kodre
Iztok Arčon
Marko Jagodič
Miha Drofenik
Publikationsdatum
01.05.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9833-5

Weitere Artikel der Ausgabe 4/2010

Journal of Nanoparticle Research 4/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.