Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2012

01.07.2012 | Research Paper

Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility

verfasst von: M. Mačković, A. Hoppe, R. Detsch, D. Mohn, W. J. Stark, E. Spiecker, A. R. Boccaccini

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20–60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles’ bioreactivity required for applications in bone tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28(19):3043–3054CrossRef Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28(19):3043–3054CrossRef
Zurück zum Zitat Berner RA (1976) The solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5 0/00 salinity. Am J Sci 276(6):713–730CrossRef Berner RA (1976) The solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5 0/00 salinity. Am J Sci 276(6):713–730CrossRef
Zurück zum Zitat Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764–1776CrossRef Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764–1776CrossRef
Zurück zum Zitat Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30(12):2175–2179CrossRef Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30(12):2175–2179CrossRef
Zurück zum Zitat Bosch RF, Adelantado JVG, Moya Moreno MCM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58(4):811–821CrossRef Bosch RF, Adelantado JVG, Moya Moreno MCM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58(4):811–821CrossRef
Zurück zum Zitat Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun 13:1384–1386CrossRef Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun 13:1384–1386CrossRef
Zurück zum Zitat Bunker BC, Tallant DR, Headley TJ, Turner GL, Kirkpatrick RJ (1988) Structure of leached sodium borosilicate glass. Phys Chem Glasses 29(3):106–120 Bunker BC, Tallant DR, Headley TJ, Turner GL, Kirkpatrick RJ (1988) Structure of leached sodium borosilicate glass. Phys Chem Glasses 29(3):106–120
Zurück zum Zitat Cerruti M, Morterra C (2004) Carbonate formation on bioactive glasses. Langmuir 20(15):6382–6388CrossRef Cerruti M, Morterra C (2004) Carbonate formation on bioactive glasses. Langmuir 20(15):6382–6388CrossRef
Zurück zum Zitat Cerruti M, Bianchi CL, Bonino F, Damin A, Perardi A, Morterra C (2005a) Surface modifications of bioglass immersed in TRIS-buffered solution. A multitechnical spectroscopic study. J Phys Chem B 109(30):14496–14505CrossRef Cerruti M, Bianchi CL, Bonino F, Damin A, Perardi A, Morterra C (2005a) Surface modifications of bioglass immersed in TRIS-buffered solution. A multitechnical spectroscopic study. J Phys Chem B 109(30):14496–14505CrossRef
Zurück zum Zitat Cerruti M, Greenspan D, Powers K (2005b) Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 26(14):1665–1674CrossRef Cerruti M, Greenspan D, Powers K (2005b) Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials 26(14):1665–1674CrossRef
Zurück zum Zitat Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6(9):3740–3746CrossRef Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6(9):3740–3746CrossRef
Zurück zum Zitat Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B (2002) Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst Res Technol 37(11):1234–1240CrossRef Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B (2002) Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst Res Technol 37(11):1234–1240CrossRef
Zurück zum Zitat Davies CW, Shedlovsky T (1964) Ion association. J Electrochem Soc 111(3):85C–86CCrossRef Davies CW, Shedlovsky T (1964) Ion association. J Electrochem Soc 111(3):85C–86CCrossRef
Zurück zum Zitat Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9(12):1010–1014CrossRef Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NAJM (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9(12):1010–1014CrossRef
Zurück zum Zitat Du H, Williams CT, Ebner AD, Ritter JA (2010) In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem Mater 22(11):3519–3526CrossRef Du H, Williams CT, Ebner AD, Ritter JA (2010) In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem Mater 22(11):3519–3526CrossRef
Zurück zum Zitat Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam
Zurück zum Zitat Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180(4090):1055–1057CrossRef Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180(4090):1055–1057CrossRef
Zurück zum Zitat Gabbi C, Cacchioli A, Locardi B, Guadagnino E (1995) Bioactive glass coating: physicochemical aspects and biological findings. Biomaterials 16(7):515–520CrossRef Gabbi C, Cacchioli A, Locardi B, Guadagnino E (1995) Bioactive glass coating: physicochemical aspects and biological findings. Biomaterials 16(7):515–520CrossRef
Zurück zum Zitat Gann H, Glaspell G, Garrad R, Wanekaya A, Ghosh K, Cillessen L, Scholz A, Parker B, Warner M, Delong RK (2010) Interaction of MnO and ZnO nanomaterials with biomedically important proteins and cells. J Biomed Nanotechnol 6(1):37–42CrossRef Gann H, Glaspell G, Garrad R, Wanekaya A, Ghosh K, Cillessen L, Scholz A, Parker B, Warner M, Delong RK (2010) Interaction of MnO and ZnO nanomaterials with biomedically important proteins and cells. J Biomed Nanotechnol 6(1):37–42CrossRef
Zurück zum Zitat Gerhardt LC, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled poly(d, l lactic acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18(7):1287–1298CrossRef Gerhardt LC, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled poly(d, l lactic acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18(7):1287–1298CrossRef
Zurück zum Zitat Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef
Zurück zum Zitat Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15:543–562CrossRef Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15:543–562CrossRef
Zurück zum Zitat Heng B, Zhao X, Xiong S, Ng K, Boey F, Loo J (2011) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 85(6):695–704CrossRef Heng B, Zhao X, Xiong S, Ng K, Boey F, Loo J (2011) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 85(6):695–704CrossRef
Zurück zum Zitat Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T (1997) Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res 36(4):522–528CrossRef Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T (1997) Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res 36(4):522–528CrossRef
Zurück zum Zitat Jell G, Stevens M (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17(11):997–1002CrossRef Jell G, Stevens M (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17(11):997–1002CrossRef
Zurück zum Zitat Jones JR, Sepulveda P, Hench LL (2001) Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res 58(6):720–726CrossRef Jones JR, Sepulveda P, Hench LL (2001) Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res 58(6):720–726CrossRef
Zurück zum Zitat Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155–163CrossRef Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155–163CrossRef
Zurück zum Zitat Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46(7):2519–2527CrossRef Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46(7):2519–2527CrossRef
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915CrossRef
Zurück zum Zitat Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res 24(3):331–343CrossRef Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1990) Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res 24(3):331–343CrossRef
Zurück zum Zitat Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612CrossRef Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612CrossRef
Zurück zum Zitat Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32(4):1010–1018CrossRef Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32(4):1010–1018CrossRef
Zurück zum Zitat Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376CrossRef Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376CrossRef
Zurück zum Zitat Lin S, Van den Bergh W, Baker S, Jones JR (2011) Protein interactions with nanoporous sol–gel derived bioactive glasses. Acta Biomater 7(10):3606–3615CrossRef Lin S, Van den Bergh W, Baker S, Jones JR (2011) Protein interactions with nanoporous sol–gel derived bioactive glasses. Acta Biomater 7(10):3606–3615CrossRef
Zurück zum Zitat Loher S (2006) Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide). Nanotechnology 17(8):2054CrossRef Loher S (2006) Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide). Nanotechnology 17(8):2054CrossRef
Zurück zum Zitat Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 29(12):1750–1761CrossRef Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 29(12):1750–1761CrossRef
Zurück zum Zitat Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO(2)-CaO-P(2)O(5) glass in simulated body fluid. J Non-Cryst Solids 356(28–30):1470–1478CrossRef Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO(2)-CaO-P(2)O(5) glass in simulated body fluid. J Non-Cryst Solids 356(28–30):1470–1478CrossRef
Zurück zum Zitat Müller L, Müller FA (2006) Preparation of SBF with different content and its influence on the composition of biomimetic apatites. Acta Biomater 2(2):181–189CrossRef Müller L, Müller FA (2006) Preparation of SBF with different content and its influence on the composition of biomimetic apatites. Acta Biomater 2(2):181–189CrossRef
Zurück zum Zitat Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557CrossRef Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557CrossRef
Zurück zum Zitat Nielsen AE (1984) Electrolyte crystal growth mechanisms. J Cryst Growth 67(2):289–310CrossRef Nielsen AE (1984) Electrolyte crystal growth mechanisms. J Cryst Growth 67(2):289–310CrossRef
Zurück zum Zitat Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Nakamura T (1995) Transmission electron-microscopic observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body-fluid. J Ceram Soc Jpn 103(5):449–454CrossRef Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Nakamura T (1995) Transmission electron-microscopic observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body-fluid. J Ceram Soc Jpn 103(5):449–454CrossRef
Zurück zum Zitat Oyane A, Onuma K, Ito A, Kim HM, Kokubo T, Nakamura T (2003) Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res, Part A 64A(2):339–348CrossRef Oyane A, Onuma K, Ito A, Kim HM, Kokubo T, Nakamura T (2003) Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res, Part A 64A(2):339–348CrossRef
Zurück zum Zitat Pan H, Zhao X, Darvell BW, Lu WW (2010) Apatite-formation ability: predictor of “bioactivity”? Acta Biomater 6(11):4181–4188CrossRef Pan H, Zhao X, Darvell BW, Lu WW (2010) Apatite-formation ability: predictor of “bioactivity”? Acta Biomater 6(11):4181–4188CrossRef
Zurück zum Zitat Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25(2):229–238CrossRef Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25(2):229–238CrossRef
Zurück zum Zitat Pichon BP, Bomans PHH, Frederik PM, Sommerdijk NAJM (2008) A quasi-time-resolved cryoTEM study of the nucleation of CaCO3 under Langmuir monolayers. J Am Chem Soc 130(12):4034–4040CrossRef Pichon BP, Bomans PHH, Frederik PM, Sommerdijk NAJM (2008) A quasi-time-resolved cryoTEM study of the nucleation of CaCO3 under Langmuir monolayers. J Am Chem Soc 130(12):4034–4040CrossRef
Zurück zum Zitat Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373CrossRef Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373CrossRef
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef
Zurück zum Zitat Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195CrossRef Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195CrossRef
Zurück zum Zitat Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311CrossRef Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311CrossRef
Zurück zum Zitat Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5(1):338–345CrossRef Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5(1):338–345CrossRef
Zurück zum Zitat Tang R, Henneman ZJ, Nancollas GH (2003) Constant composition kinetics study of carbonated apatite dissolution. J Cryst Growth 249(3–4):614–624CrossRef Tang R, Henneman ZJ, Nancollas GH (2003) Constant composition kinetics study of carbonated apatite dissolution. J Cryst Growth 249(3–4):614–624CrossRef
Zurück zum Zitat Tilocca A (2011) Molecular dynamics simulations of a bioactive glass nanoparticle. J Mater Chem 21(34):12660–12667CrossRef Tilocca A (2011) Molecular dynamics simulations of a bioactive glass nanoparticle. J Mater Chem 21(34):12660–12667CrossRef
Zurück zum Zitat Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3(6):936–943CrossRef Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3(6):936–943CrossRef
Zurück zum Zitat Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86(8):754–757CrossRef Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86(8):754–757CrossRef
Zurück zum Zitat Zhu PX, Masuda Y, Yonezawa T, Koumoto K (2003) Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J Am Ceram Soc 86(5):782–790CrossRef Zhu PX, Masuda Y, Yonezawa T, Koumoto K (2003) Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J Am Ceram Soc 86(5):782–790CrossRef
Metadaten
Titel
Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility
verfasst von
M. Mačković
A. Hoppe
R. Detsch
D. Mohn
W. J. Stark
E. Spiecker
A. R. Boccaccini
Publikationsdatum
01.07.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-0966-6

Weitere Artikel der Ausgabe 7/2012

Journal of Nanoparticle Research 7/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.