Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2013

01.01.2013 | Research Paper

Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

verfasst von: S. Tavakol, M. R. Nikpour, A. Amani, M. Soltani, S. M. Rabiee, S. M. Rezayat, P. Chen, M. Jahanshahi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed R, Faisal N, Paradowska A, Fitzpatrick M, Khor K (2011) Neutron diffraction residual strain measurements in nanostructured hydroxyapatite coatings for orthopaedic implants. J Mech Behav Biomed Mater 4(8):2043–2054CrossRef Ahmed R, Faisal N, Paradowska A, Fitzpatrick M, Khor K (2011) Neutron diffraction residual strain measurements in nanostructured hydroxyapatite coatings for orthopaedic implants. J Mech Behav Biomed Mater 4(8):2043–2054CrossRef
Zurück zum Zitat Ao Q, Fung C, Tsui A, Cai S, Zuo H, Chan Y, Shum D (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32(3):787–796CrossRef Ao Q, Fung C, Tsui A, Cai S, Zuo H, Chan Y, Shum D (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32(3):787–796CrossRef
Zurück zum Zitat Att W, Hori N, Iwasa F, Yamada M, Ueno T, Ogawa T (2009a) The effect of UV-photofunctionalization on the timerelated bioactivity of titanium and chromium-cobalt alloys. Biomaterials 30(26):4268–4276CrossRef Att W, Hori N, Iwasa F, Yamada M, Ueno T, Ogawa T (2009a) The effect of UV-photofunctionalization on the timerelated bioactivity of titanium and chromium-cobalt alloys. Biomaterials 30(26):4268–4276CrossRef
Zurück zum Zitat Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T (2009b) Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30(29):5352–5363CrossRef Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T (2009b) Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30(29):5352–5363CrossRef
Zurück zum Zitat Bin L, Longnan H, Xinbo W, Jinhuan M, Fang X (2011) Biodegradation and compressive strength of phosphorylated chitosan/chitosan/hydroxyapatite bio-composites. Mater Des 32(8–9):4543–4547 Bin L, Longnan H, Xinbo W, Jinhuan M, Fang X (2011) Biodegradation and compressive strength of phosphorylated chitosan/chitosan/hydroxyapatite bio-composites. Mater Des 32(8–9):4543–4547
Zurück zum Zitat Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B 81(2):640–647CrossRef Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B 81(2):640–647CrossRef
Zurück zum Zitat Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Feng Q, Yu B (2012a) In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater 1–6:Article ID 401084 Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Feng Q, Yu B (2012a) In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater 1–6:Article ID 401084
Zurück zum Zitat Chen Y, Li S, Li X, Zhang Y, Huang Z, Feng Q, Zhou Z, Lin B, Yu B (2012b) Noninvasive evaluation of injectable chitosan/nano-hydroxyapatite/collagen scaffold via ultrasound. J Nanomater 1–7:Article ID 939821 Chen Y, Li S, Li X, Zhang Y, Huang Z, Feng Q, Zhou Z, Lin B, Yu B (2012b) Noninvasive evaluation of injectable chitosan/nano-hydroxyapatite/collagen scaffold via ultrasound. J Nanomater 1–7:Article ID 939821
Zurück zum Zitat Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15(9):2571–2579CrossRef Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15(9):2571–2579CrossRef
Zurück zum Zitat Clarke SA, Hoskins NL, Jordan GR, Henderson SA, Marsh DR (2007) In vitro testing of advanced JAX bone void filler system: species differences in the response of bone marrow stromal cells to β tri-calcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med 18(12):2283–2290CrossRef Clarke SA, Hoskins NL, Jordan GR, Henderson SA, Marsh DR (2007) In vitro testing of advanced JAX bone void filler system: species differences in the response of bone marrow stromal cells to β tri-calcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med 18(12):2283–2290CrossRef
Zurück zum Zitat Dalby M, David M, Mary R, Hossein A, Duncan S, Stanley A, Richard O (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27(15):2980–2987CrossRef Dalby M, David M, Mary R, Hossein A, Duncan S, Stanley A, Richard O (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27(15):2980–2987CrossRef
Zurück zum Zitat Fang L, Leng Y, Gao P (2005) Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials 26(17):3471–3478CrossRef Fang L, Leng Y, Gao P (2005) Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials 26(17):3471–3478CrossRef
Zurück zum Zitat Hassenkam T, Fantner G, Cutroni J, Weaver J, Morse D, Hansma P (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10CrossRef Hassenkam T, Fantner G, Cutroni J, Weaver J, Morse D, Hansma P (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10CrossRef
Zurück zum Zitat Huang Z, Yu B, Feng Q, Li S, Chen Y, Luo L (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 85(1):261–267CrossRef Huang Z, Yu B, Feng Q, Li S, Chen Y, Luo L (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 85(1):261–267CrossRef
Zurück zum Zitat Kim K, Dean D, Lu A, Mikos A, Fisher J (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264CrossRef Kim K, Dean D, Lu A, Mikos A, Fisher J (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264CrossRef
Zurück zum Zitat Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res Part A 75(2):275–282CrossRef Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res Part A 75(2):275–282CrossRef
Zurück zum Zitat Kong L, Gao Y, Lu G, Gong Y, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatitecomposite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179CrossRef Kong L, Gao Y, Lu G, Gong Y, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatitecomposite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179CrossRef
Zurück zum Zitat Kumar M, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084CrossRef Kumar M, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084CrossRef
Zurück zum Zitat Luo X, Zhang L, Morsi Y, Zou Q, Wang Y, Gao S, Li Y (2011) Hydroxyapatite/polyamide 66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci 257(23):9888–9894CrossRef Luo X, Zhang L, Morsi Y, Zou Q, Wang Y, Gao S, Li Y (2011) Hydroxyapatite/polyamide 66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci 257(23):9888–9894CrossRef
Zurück zum Zitat Manjubala I, Scheler S, Bossert J, Jandt K (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2(1):75–78CrossRef Manjubala I, Scheler S, Bossert J, Jandt K (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2(1):75–78CrossRef
Zurück zum Zitat Mohamed K, M.El-Rashidy Z, Salamai A (2011) In-vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37:3265–3271CrossRef Mohamed K, M.El-Rashidy Z, Salamai A (2011) In-vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37:3265–3271CrossRef
Zurück zum Zitat Muzzarelli R (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83(4):1433–1445CrossRef Muzzarelli R (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83(4):1433–1445CrossRef
Zurück zum Zitat Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291CrossRef Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291CrossRef
Zurück zum Zitat Qiaoling H, Baoqiang L, Mang W, Jiacong S (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25(5):779–785CrossRef Qiaoling H, Baoqiang L, Mang W, Jiacong S (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25(5):779–785CrossRef
Zurück zum Zitat Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8–9):2785–2792CrossRef Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8–9):2785–2792CrossRef
Zurück zum Zitat Rusu V, Ng C, Wilke M, Tiersch B, Fratzl P, Peter M (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef Rusu V, Ng C, Wilke M, Tiersch B, Fratzl P, Peter M (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef
Zurück zum Zitat San Thian E, Huang J, Barber Z, Best S, Bonfield W (2011) Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surf Coat Technol 205(11):3472–3477CrossRef San Thian E, Huang J, Barber Z, Best S, Bonfield W (2011) Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surf Coat Technol 205(11):3472–3477CrossRef
Zurück zum Zitat Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193CrossRef Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193CrossRef
Zurück zum Zitat Silva G, Czeisler C, Niece K, Beniash E, Harrington D, Kessler J et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef Silva G, Czeisler C, Niece K, Beniash E, Harrington D, Kessler J et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef
Zurück zum Zitat Tan F, Naciri M, Dowling D, Al-Rubeai M (2012) In-vitro and in-vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotechnol Adv 30(1):352–362CrossRef Tan F, Naciri M, Dowling D, Al-Rubeai M (2012) In-vitro and in-vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotechnol Adv 30(1):352–362CrossRef
Zurück zum Zitat Tavakol S, Ragerdi Kashani I, Azami M, Khoshzaban A, Tavakol B, Kharrazi S, Ebrahimi S, Rezayat Sorkhabadi SM (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14:1265CrossRef Tavakol S, Ragerdi Kashani I, Azami M, Khoshzaban A, Tavakol B, Kharrazi S, Ebrahimi S, Rezayat Sorkhabadi SM (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14:1265CrossRef
Zurück zum Zitat Teng S-H, Lee E-J, Yoon B-H, Shin D-S, Kim H-E, Oh J-S (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88(3):569–580 Teng S-H, Lee E-J, Yoon B-H, Shin D-S, Kim H-E, Oh J-S (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88(3):569–580
Zurück zum Zitat Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRef Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRef
Zurück zum Zitat Xu H, Carl S (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26(12):1337–1348CrossRef Xu H, Carl S (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26(12):1337–1348CrossRef
Zurück zum Zitat Yim E, Pang S, Leong K (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829CrossRef Yim E, Pang S, Leong K (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829CrossRef
Zurück zum Zitat Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res Part A 77(2):277–284CrossRef Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res Part A 77(2):277–284CrossRef
Zurück zum Zitat Zhao F, Grayson W, Ma T, Bunnell B, Lu W (2006) Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell constructs development. Biomaterials 27(9):1859–1867CrossRef Zhao F, Grayson W, Ma T, Bunnell B, Lu W (2006) Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell constructs development. Biomaterials 27(9):1859–1867CrossRef
Zurück zum Zitat Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B: Appl Biomater 83(1):121–126CrossRef Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B: Appl Biomater 83(1):121–126CrossRef
Zurück zum Zitat Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781CrossRef Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781CrossRef
Metadaten
Titel
Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study
verfasst von
S. Tavakol
M. R. Nikpour
A. Amani
M. Soltani
S. M. Rabiee
S. M. Rezayat
P. Chen
M. Jahanshahi
Publikationsdatum
01.01.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1373-8

Weitere Artikel der Ausgabe 1/2013

Journal of Nanoparticle Research 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.