Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2013

01.06.2013 | Research Paper

Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization

verfasst von: K. Vamvakidis, D. Sakellari, M. Angelakeris, C. Dendrinou-Samara

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A facile solvothermal approach was used to synthesize stable, superparamagnetic manganese ferrite nanoparticles with relatively small sizes (<10 nm) and enhanced magnetic features. Tetraethylene glycol has been used in all the syntheses as a biocompatible and stabilizing agent. By varying the oxidation state of manganese precursor, Mn(acac)2 to Mn(acac)3, different sizes, 8 and 5 nm, of MnFe2O4 nanoparticles were obtained respectively, while by tailoring the synthetic conditions iron-rich Mn0.77Fe2.23O4 nanoparticles have been isolated with identical sizes and enhanced saturation magnetization. The magnetization values increased from 58.2 to 68.3 Am2/kg and from 53.3 to 60.2 Am2/kg for the nanoparticles of 8 and 5 nm, respectively. Blocking temperature (T B), ranging from 80 to 180 K, and anisotropy constant (K eff), ranging from 1.5 × 105 to 4.9 × 105 J/m3, were found higher for the iron-rich samples and associated with size and composition effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adireddy S, Lin C et al (2009) Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions. J Phys Chem C 49:20800–20811CrossRef Adireddy S, Lin C et al (2009) Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions. J Phys Chem C 49:20800–20811CrossRef
Zurück zum Zitat Antic B, Kremenovic A et al (2012) Magnetization enhancement and cation valences in nonstoichiometric (MnFe)3−δ nanoparticles. J Appl Phys 111:6–074309CrossRef Antic B, Kremenovic A et al (2012) Magnetization enhancement and cation valences in nonstoichiometric (MnFe)3−δ nanoparticles. J Appl Phys 111:6–074309CrossRef
Zurück zum Zitat Broese Van Groenou A et al (1968) Magnetism, microstructure and crystak chemistry of spinel ferrites. Mater Sci Eng 3:317–392 Broese Van Groenou A et al (1968) Magnetism, microstructure and crystak chemistry of spinel ferrites. Mater Sci Eng 3:317–392
Zurück zum Zitat Cao H, Wang G et al (2006) Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 7:1897–1901CrossRef Cao H, Wang G et al (2006) Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 7:1897–1901CrossRef
Zurück zum Zitat Carta D, Casula MF et al (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals. J Phys Chem C 113:8606–8615CrossRef Carta D, Casula MF et al (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals. J Phys Chem C 113:8606–8615CrossRef
Zurück zum Zitat Charles RG, Pawlikowski MA (1958) Comparative heat stabilities of some metal acetylacetonate chelates. J Phys Chem 62:440–444CrossRef Charles RG, Pawlikowski MA (1958) Comparative heat stabilities of some metal acetylacetonate chelates. J Phys Chem 62:440–444CrossRef
Zurück zum Zitat Chen J, Sorensen C et al (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296CrossRef Chen J, Sorensen C et al (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296CrossRef
Zurück zum Zitat Colombo M, Carregal-Romero S et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRef Colombo M, Carregal-Romero S et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRef
Zurück zum Zitat Cornell RM, Schwertmann U (2000) The iron oxides: structure, properties, reactions, occurrence and uses. Annu Rev Mater Sci 30:545–610CrossRef Cornell RM, Schwertmann U (2000) The iron oxides: structure, properties, reactions, occurrence and uses. Annu Rev Mater Sci 30:545–610CrossRef
Zurück zum Zitat Garcia-Otero J, Porto M, Rivas J, Bunde A (2000) Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys Rev Lett 84:167–170CrossRef Garcia-Otero J, Porto M, Rivas J, Bunde A (2000) Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys Rev Lett 84:167–170CrossRef
Zurück zum Zitat Gillot B, Laarj M, Kacim S (1997) Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3−x Fe x O4 (0 ≤ x ≤ 3) fine powders studied by thermogravimetry and IR spectroscopy. J Mater Chem 7:827–831CrossRef Gillot B, Laarj M, Kacim S (1997) Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3−x Fe x O4 (0 ≤ x ≤ 3) fine powders studied by thermogravimetry and IR spectroscopy. J Mater Chem 7:827–831CrossRef
Zurück zum Zitat Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18:2919–2934CrossRef Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18:2919–2934CrossRef
Zurück zum Zitat Hu H, Tian Z et al (2011) Surfactant-controlled morphology and magnetic property of manganese ferrite nanocrystal contrast agent. Nanotechnology 22:7–085707 Hu H, Tian Z et al (2011) Surfactant-controlled morphology and magnetic property of manganese ferrite nanocrystal contrast agent. Nanotechnology 22:7–085707
Zurück zum Zitat Jang J, Nah H et al (2012) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238CrossRef Jang J, Nah H et al (2012) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238CrossRef
Zurück zum Zitat Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman & Hall.CRC press LLC, FloridaCrossRef Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman & Hall.CRC press LLC, FloridaCrossRef
Zurück zum Zitat Jun Y, Lee J, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135CrossRef Jun Y, Lee J, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135CrossRef
Zurück zum Zitat Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50:1980–1994CrossRef Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50:1980–1994CrossRef
Zurück zum Zitat Kim D, Zeng H et al (2009) T1 and T2 relaxivities of succimer-coated MFe2O4 (M = Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI. J Magn Magn Mater 32:3899–3904CrossRef Kim D, Zeng H et al (2009) T1 and T2 relaxivities of succimer-coated MFe2O4 (M = Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI. J Magn Magn Mater 32:3899–3904CrossRef
Zurück zum Zitat Kneller EF, Luborsky FE (1963) Particle-size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658CrossRef Kneller EF, Luborsky FE (1963) Particle-size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658CrossRef
Zurück zum Zitat Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRef Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRef
Zurück zum Zitat Köseoglua Y, Alana F, Tana M, Yilginb R, Öztürkb M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634CrossRef Köseoglua Y, Alana F, Tana M, Yilginb R, Öztürkb M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634CrossRef
Zurück zum Zitat Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics and therapy. IEEE Trans Magn 46:2523–2558CrossRef Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics and therapy. IEEE Trans Magn 46:2523–2558CrossRef
Zurück zum Zitat Kumar P (2010) Magnetic behavior of surface nanostructured 50 nm nickel thin films. Nanoscale Res Lett 5:1596–1602CrossRef Kumar P (2010) Magnetic behavior of surface nanostructured 50 nm nickel thin films. Nanoscale Res Lett 5:1596–1602CrossRef
Zurück zum Zitat Kwon SG, Piao Y et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRef Kwon SG, Piao Y et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRef
Zurück zum Zitat Li X (2011) Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3:718–724CrossRef Li X (2011) Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3:718–724CrossRef
Zurück zum Zitat Li H, Wu H, Xiao G (2010) Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol 198:157–166CrossRef Li H, Wu H, Xiao G (2010) Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol 198:157–166CrossRef
Zurück zum Zitat Lima E, Biasi E et al (2010) Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J Appl Phys 108:10–103919 Lima E, Biasi E et al (2010) Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J Appl Phys 108:10–103919
Zurück zum Zitat Liu C, Zou B et al (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267CrossRef Liu C, Zou B et al (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267CrossRef
Zurück zum Zitat Lu A, Salabas E, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef Lu A, Salabas E, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRef
Zurück zum Zitat Néel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–165 Néel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–165
Zurück zum Zitat Neuberger T, Schopf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef Neuberger T, Schopf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef
Zurück zum Zitat Nlebedim IC, Snyder JE et al (2012) Anisotropy and magnetostriction in non-stoichiometric cobalt ferrite. IEEE Trans Magn 48:3084–3087CrossRef Nlebedim IC, Snyder JE et al (2012) Anisotropy and magnetostriction in non-stoichiometric cobalt ferrite. IEEE Trans Magn 48:3084–3087CrossRef
Zurück zum Zitat Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504CrossRef Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504CrossRef
Zurück zum Zitat Rondinone AJ, Liu C et al (2001) Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J Phys Chem B 105:7967–7971CrossRef Rondinone AJ, Liu C et al (2001) Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J Phys Chem B 105:7967–7971CrossRef
Zurück zum Zitat Salafranca J, Gazquez J et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499–2503CrossRef Salafranca J, Gazquez J et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499–2503CrossRef
Zurück zum Zitat Schmid G (2010) Nanoparticles: from theory to application. Wiley-VCH, WeinheimCrossRef Schmid G (2010) Nanoparticles: from theory to application. Wiley-VCH, WeinheimCrossRef
Zurück zum Zitat Shim JH, Lee S, Min BI (2007) Abnormal spin structure of manganese ferrite investigated by 57Fe NMR. Phys Rev B 75:5–134406CrossRef Shim JH, Lee S, Min BI (2007) Abnormal spin structure of manganese ferrite investigated by 57Fe NMR. Phys Rev B 75:5–134406CrossRef
Zurück zum Zitat Sickafus K, Wills J, Grimes N (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292CrossRef Sickafus K, Wills J, Grimes N (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292CrossRef
Zurück zum Zitat Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge
Zurück zum Zitat Vargas J, Srivastava A et al (2011) Tuning the thermal relaxation of transition-metal ferrite nanoparticles through their intrinsic magnetocrystalline anisotropy. J Appl Phys 110:064304–064306CrossRef Vargas J, Srivastava A et al (2011) Tuning the thermal relaxation of transition-metal ferrite nanoparticles through their intrinsic magnetocrystalline anisotropy. J Appl Phys 110:064304–064306CrossRef
Zurück zum Zitat Verwey E, Heilmann E (1947) Physical properties and cation arrangements of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15:174–180CrossRef Verwey E, Heilmann E (1947) Physical properties and cation arrangements of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15:174–180CrossRef
Zurück zum Zitat Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833CrossRef Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833CrossRef
Zurück zum Zitat Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735CrossRef Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735CrossRef
Zurück zum Zitat Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31:230–238CrossRef Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31:230–238CrossRef
Zurück zum Zitat Xu B, Wang X (2012) Solvothermal synthesis of monodisperse nanocrystals. Dalton Trans 41:4719–4725CrossRef Xu B, Wang X (2012) Solvothermal synthesis of monodisperse nanocrystals. Dalton Trans 41:4719–4725CrossRef
Zurück zum Zitat Yang H, Zhang C et al (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673CrossRef Yang H, Zhang C et al (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673CrossRef
Metadaten
Titel
Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization
verfasst von
K. Vamvakidis
D. Sakellari
M. Angelakeris
C. Dendrinou-Samara
Publikationsdatum
01.06.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1743-x

Weitere Artikel der Ausgabe 6/2013

Journal of Nanoparticle Research 6/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.