Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2016

01.03.2016 | Research Paper

Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel

verfasst von: Pingan Yang, Miao Yu, Jie Fu

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a kind of new Magnetorheological (MR) material, MR Gel (MRG) can be regarded as the analog of MR fluid (MRF), which can overcome the iron particles sedimentation and unstable application of MRF. Normally, the storage modulus of conventional MRG is relatively small, although it has a very high relative MR effect. Therefore, practical engineering application of conventional MRG has been restricted more or less. In this work, an MRG with high magneto-induced shear storage modulus and excellent relative MR effect has been fabricated by incorporating Ni-coated multi-walled carbon nanotubes (Ni-coated MWCNTs). And several polyurethane-based MRG composites with the addition of Ni-coated MWCNTs were prepared. The dynamic mechanical property of those MRG composites with applying magnetic field is researched through an advanced commercial rheometer. The experimental results indicated that the initial storage modulus and magneto-induced modulus in sample 4 (containing 6 wt% of the Ni-coated MWCNTs) were approximately 4.45 and 2.27 times than that in the sample 1 (without Ni-coated MWCNTs). Moreover, the relative MR effect of sample 4 can reach 3427 %. The high modulus of sample 4 can be mainly attributed to the following points. One is the Ni-coated MWCNTs can be aligned along the direction of the magnetic field within the matrix which provided a better reinforcing efficiency. The other is Ni-coated MWCNTs can be made to form a better bonding between the iron particles and the matrix. It is concluded that this study provides a meaningful way to improve the mechanical properties of MRG and expected to promote the application of MRG in practice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat An H, Picken SJ, Mendes E (2010) Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields. Soft Matter 6:4497–4503CrossRef An H, Picken SJ, Mendes E (2010) Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields. Soft Matter 6:4497–4503CrossRef
Zurück zum Zitat An H, Picken SJ, Mendes E (2012) Nonlinear rheological study of magneto responsive soft gels. Polymer 53:4164–4170CrossRef An H, Picken SJ, Mendes E (2012) Nonlinear rheological study of magneto responsive soft gels. Polymer 53:4164–4170CrossRef
Zurück zum Zitat Cai Q, Mao JF, Li XL, Yang XP (2014) Macroporous and nanofibrous PLLA scaffolds reinforced with calcium phosphate-coated multiwalled carbon nanotubes. Mater Lett 128:238–241CrossRef Cai Q, Mao JF, Li XL, Yang XP (2014) Macroporous and nanofibrous PLLA scaffolds reinforced with calcium phosphate-coated multiwalled carbon nanotubes. Mater Lett 128:238–241CrossRef
Zurück zum Zitat Chandra R, Singh SP, Gupta K (1999) Damping studies in fiber-reinforced composites–a review. Compos Struct 46:41–51CrossRef Chandra R, Singh SP, Gupta K (1999) Damping studies in fiber-reinforced composites–a review. Compos Struct 46:41–51CrossRef
Zurück zum Zitat Chen W, Tao XM, Liu YY (2006) Carbon nanotube-reinforced polyurethane composite fibers. Compos Sci Technol 66:3029–3034CrossRef Chen W, Tao XM, Liu YY (2006) Carbon nanotube-reinforced polyurethane composite fibers. Compos Sci Technol 66:3029–3034CrossRef
Zurück zum Zitat Chen L, Gong XL, Jiang WQ, Yao JJ, Deng HX, Li WH (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mater Sci 42:5483–5489CrossRef Chen L, Gong XL, Jiang WQ, Yao JJ, Deng HX, Li WH (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mater Sci 42:5483–5489CrossRef
Zurück zum Zitat Coleman JN, Khan U, Blau WJ, Gun’Ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’Ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef
Zurück zum Zitat Fan YC, Gong XL, Xuan SH, Qin LJ, Li XF (2012) Effect of cross-link density of the matrix on the damping properties of magnetorheological elastomers. Ind Eng Chem Res 52:771–778CrossRef Fan YC, Gong XL, Xuan SH, Qin LJ, Li XF (2012) Effect of cross-link density of the matrix on the damping properties of magnetorheological elastomers. Ind Eng Chem Res 52:771–778CrossRef
Zurück zum Zitat Felicia LJ, Philip J (2014) Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys Rev E 89:22310CrossRef Felicia LJ, Philip J (2014) Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys Rev E 89:22310CrossRef
Zurück zum Zitat Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos Sci Technol 63:1689–1703CrossRef Fisher FT, Bradshaw RD, Brinson LC (2003) Fiber waviness in nanotube-reinforced polymer composites-I: modulus predictions using effective nanotube properties. Compos Sci Technol 63:1689–1703CrossRef
Zurück zum Zitat Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654CrossRef Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654CrossRef
Zurück zum Zitat Fuchs A, Xin M, Gordaninejad F, Wang XJ, Hitchcock GH, Gecol H, Evrensel C, Korol G (2004) Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels. J Appl Polym Sci 92:1176–1182CrossRef Fuchs A, Xin M, Gordaninejad F, Wang XJ, Hitchcock GH, Gecol H, Evrensel C, Korol G (2004) Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels. J Appl Polym Sci 92:1176–1182CrossRef
Zurück zum Zitat Gong XL, Xu YG, Xuan SH, Guo CY, Zong LH (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56:1375–1391CrossRef Gong XL, Xu YG, Xuan SH, Guo CY, Zong LH (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56:1375–1391CrossRef
Zurück zum Zitat Hou Y, Tang J, Zhang HB, Qian C, Feng YY, Liu J (2009) Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3:1057–1062CrossRef Hou Y, Tang J, Zhang HB, Qian C, Feng YY, Liu J (2009) Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3:1057–1062CrossRef
Zurück zum Zitat Jia Y, Jiang ZM, Peng JP, Gong XL, Zhang Z (2012) Resistance to time-dependent deformation of polystyrene/carbon nanotube composites under cyclic tension. Compos A 43:1561–1568CrossRef Jia Y, Jiang ZM, Peng JP, Gong XL, Zhang Z (2012) Resistance to time-dependent deformation of polystyrene/carbon nanotube composites under cyclic tension. Compos A 43:1561–1568CrossRef
Zurück zum Zitat Ju BX, Yu M, Fu J, Zheng X, Liu SZ (2013) Magnetic field-dependent normal force of magnetorheological gel. Ind Eng Chem Res 52:11583–11589CrossRef Ju BX, Yu M, Fu J, Zheng X, Liu SZ (2013) Magnetic field-dependent normal force of magnetorheological gel. Ind Eng Chem Res 52:11583–11589CrossRef
Zurück zum Zitat Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu XT, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114:6944–6951CrossRef Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu XT, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114:6944–6951CrossRef
Zurück zum Zitat Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5:879–884CrossRef Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5:879–884CrossRef
Zurück zum Zitat Landa RA, Antonel PS, Ruiz MM, Perez OE, Butera A, Jorge G, Oliveira CLP, Negri RM (2013) Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. J Appl Phys 114:213912CrossRef Landa RA, Antonel PS, Ruiz MM, Perez OE, Butera A, Jorge G, Oliveira CLP, Negri RM (2013) Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. J Appl Phys 114:213912CrossRef
Zurück zum Zitat Li R, Sun LZ (2011) Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl Phys Lett 99:131912CrossRef Li R, Sun LZ (2011) Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl Phys Lett 99:131912CrossRef
Zurück zum Zitat Li WH, Du HJ, Chen G, Yeo SH, Guo NQ (2003) Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear. Rheol Acta 42:280–286 Li WH, Du HJ, Chen G, Yeo SH, Guo NQ (2003) Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear. Rheol Acta 42:280–286
Zurück zum Zitat Li WH, Zhang PQ, Gong XL, Kosasih PB (2005) Linear viscoelasticity of MR fluids: dependence on magnetic fields. Int J Mod Phys B 19:1198–1204CrossRef Li WH, Zhang PQ, Gong XL, Kosasih PB (2005) Linear viscoelasticity of MR fluids: dependence on magnetic fields. Int J Mod Phys B 19:1198–1204CrossRef
Zurück zum Zitat Li YC, Li JC, Li WH, Samali B (2013) Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater Struct 22:35005CrossRef Li YC, Li JC, Li WH, Samali B (2013) Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater Struct 22:35005CrossRef
Zurück zum Zitat Li QQ, Zaiser M, Blackford JR, Jeffree C, He YH, Koutsos V (2014) Mechanical properties and microstructure of single-wall carbon nanotube/elastomeric epoxy composites with block copolymers. Mater Lett 125:116–119CrossRef Li QQ, Zaiser M, Blackford JR, Jeffree C, He YH, Koutsos V (2014) Mechanical properties and microstructure of single-wall carbon nanotube/elastomeric epoxy composites with block copolymers. Mater Lett 125:116–119CrossRef
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef
Zurück zum Zitat Schoeck G (1969) Internal friction due to precipitation. Phys stat sol b 32:651–658CrossRef Schoeck G (1969) Internal friction due to precipitation. Phys stat sol b 32:651–658CrossRef
Zurück zum Zitat Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58:787–792CrossRef Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58:787–792CrossRef
Zurück zum Zitat Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2012) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6:362–372CrossRef Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2012) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6:362–372CrossRef
Zurück zum Zitat Wang X, Bradford PD, Liu W, Zhao HB, Inoue Y, Maria JP, Li QW, Yuan FG, Zhu YT (2011) Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol 71:1677–1683CrossRef Wang X, Bradford PD, Liu W, Zhao HB, Inoue Y, Maria JP, Li QW, Yuan FG, Zhu YT (2011) Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol 71:1677–1683CrossRef
Zurück zum Zitat Wilson MJ, Fuchs A, Gordaninejad F (2002) Development and characterization of magnetorheological polymer gels. J Appl Polym Sci 84:2733–2742CrossRef Wilson MJ, Fuchs A, Gordaninejad F (2002) Development and characterization of magnetorheological polymer gels. J Appl Polym Sci 84:2733–2742CrossRef
Zurück zum Zitat Wu JK, Gong XL, Fan CY, Xia SH (2010) Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field. Smart Mater Struct 19:105007CrossRef Wu JK, Gong XL, Fan CY, Xia SH (2010) Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field. Smart Mater Struct 19:105007CrossRef
Zurück zum Zitat Xu YG, Gong XL, Xuan SH, Zhang W, Fan YC (2011) A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties. Soft Matter 7:5246–5254CrossRef Xu YG, Gong XL, Xuan SH, Zhang W, Fan YC (2011) A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties. Soft Matter 7:5246–5254CrossRef
Zurück zum Zitat Yang J, Gong XL, Deng HX, Qin LJ, Xuan SH (2012) Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater Struct 21:125015CrossRef Yang J, Gong XL, Deng HX, Qin LJ, Xuan SH (2012) Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater Struct 21:125015CrossRef
Zurück zum Zitat Yu M, Fu J, Ju BX, Zheng X, Choi SB (2013) Influence of x-ray radiation on the properties of magnetorheological elastomers. Smart Mater Struct 22:125010CrossRef Yu M, Fu J, Ju BX, Zheng X, Choi SB (2013) Influence of x-ray radiation on the properties of magnetorheological elastomers. Smart Mater Struct 22:125010CrossRef
Zurück zum Zitat Yu M, Ju BX, Fu J, Liu SZ, Choi SB (2014) Magnetoresistance characteristics of magnetorheological gel under a magnetic field. Ind Eng Chem Res 53:4704–4710CrossRef Yu M, Ju BX, Fu J, Liu SZ, Choi SB (2014) Magnetoresistance characteristics of magnetorheological gel under a magnetic field. Ind Eng Chem Res 53:4704–4710CrossRef
Zurück zum Zitat Zhang W, Gong XL, Jiang WQ, Fan YC (2010) Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Mater Struct 19:085008CrossRef Zhang W, Gong XL, Jiang WQ, Fan YC (2010) Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Mater Struct 19:085008CrossRef
Metadaten
Titel
Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel
verfasst von
Pingan Yang
Miao Yu
Jie Fu
Publikationsdatum
01.03.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2016
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3370-9

Weitere Artikel der Ausgabe 3/2016

Journal of Nanoparticle Research 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.