Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2021

01.11.2021 | Review

Recent advances of the graphite exfoliation processes and structural modification of graphene: a review

verfasst von: M. G. Sumdani, M. R. Islam, A. N. A. Yahaya, S. I. Safie

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, which is made up of single-layer sp2 graphite, has stimulated the interest of researchers in a variety of application fields, including electronics, pharmaceuticals, and chemicals, due to its superior properties. Large-scale production of graphene is essential for the material to be viable and widely used. One of the most efficient methods of accomplishing a huge amount at a reasonable cost is to exfoliate graphite to produce graphene. The purpose of this paper is to analyze several exfoliation procedures based on a common mechanical and chemical mechanism, because a detailed analysis of the exfoliation phenomenon can lead to valuable insights about how to generate high-quality graphene more economically by optimizing exfoliation approaches. In this study, the focus is given on the extensively employed mechanical exfoliation, such as micromechanical cleavage method, sonication method, ball milling method, and fluid mechanics method and chemical exfoliation, such as chemical vapor deposition and chemical method. This study will also focus on the chemical functionalization of graphene, such as covalent functionalization and non-covalent functionalization. This review will give a deep knowledge about graphite exfoliation and functionalization phenomenon, which will guide in the right way for commercial bulk graphene synthesis with less defects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET (2021) Application of graphene in energy storage device – a review. Renew Sustain Energy Rev 135:110026CrossRef Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET (2021) Application of graphene in energy storage device – a review. Renew Sustain Energy Rev 135:110026CrossRef
Zurück zum Zitat Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European Countries. Energies 12(6):964CrossRef Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European Countries. Energies 12(6):964CrossRef
Zurück zum Zitat Abdullah WSW, Osman M, Ab Kadir MZA, Verayiah R (2019) The potential and status of renewable energy development in Malaysia. Energies 12(12):2437CrossRef Abdullah WSW, Osman M, Ab Kadir MZA, Verayiah R (2019) The potential and status of renewable energy development in Malaysia. Energies 12(12):2437CrossRef
Zurück zum Zitat Vaka M, Walvekar R, Rasheed AK, Khalid M (2020) A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production 273(12):122834 Vaka M, Walvekar R, Rasheed AK, Khalid M (2020) A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production 273(12):122834
Zurück zum Zitat Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science 11:2696–2767 Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science 11:2696–2767
Zurück zum Zitat Das CK, Bass O, Kothapalli G, Mahmoud TS, Habibi D (2018) Overview of energy storage systems in distribution networks: placement, sizing, operation, and power quality. Renew Sustain Energy Rev 91:1205–1230CrossRef Das CK, Bass O, Kothapalli G, Mahmoud TS, Habibi D (2018) Overview of energy storage systems in distribution networks: placement, sizing, operation, and power quality. Renew Sustain Energy Rev 91:1205–1230CrossRef
Zurück zum Zitat Sumdani MG, Islam MR, Yahaya ANA, Isa N (2018) Acid-Based Surfactant-Aided Dispersion of Multi-Walled Carbon Nanotubes in Epoxy-Based Nanocomposites. Polymer Engineering & Science 59(2):80–87 Sumdani MG, Islam MR, Yahaya ANA, Isa N (2018) Acid-Based Surfactant-Aided Dispersion of Multi-Walled Carbon Nanotubes in Epoxy-Based Nanocomposites. Polymer Engineering & Science 59(2):80–87
Zurück zum Zitat Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47(9):3189–3216CrossRef Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47(9):3189–3216CrossRef
Zurück zum Zitat Armano A, Agnello S (2019) Two-dimensional carbon: a review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene. C – J Carbon Res 5(4):67CrossRef Armano A, Agnello S (2019) Two-dimensional carbon: a review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene. C – J Carbon Res 5(4):67CrossRef
Zurück zum Zitat Sahoo NG, Pan Y, Li L, Chan SH (2012) Graphene-based materials for energy conversion. Adv Mater 24(30):4203–4210CrossRef Sahoo NG, Pan Y, Li L, Chan SH (2012) Graphene-based materials for energy conversion. Adv Mater 24(30):4203–4210CrossRef
Zurück zum Zitat Sumdani MG, Islam MR, Yahaya ANA (2018) Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites. Journal of Applied Polymer Science 135(48):46883 Sumdani MG, Islam MR, Yahaya ANA (2018) Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites. Journal of Applied Polymer Science 135(48):46883
Zurück zum Zitat Du Y, Xiao P, Yuan J, Chen J (2020) Research progress of graphene-based materials on flexible supercapacitors. Coatings 10:892CrossRef Du Y, Xiao P, Yuan J, Chen J (2020) Research progress of graphene-based materials on flexible supercapacitors. Coatings 10:892CrossRef
Zurück zum Zitat Yan Y, Nashath FZ, Chen S, Manickam S, Lim SS, Zhao H, Lester E, Wu T, Pang CH (2020) Synthesis of graphene: potential carbon precursors and approaches. Nanotechnol Rev 9(1):1284–1314CrossRef Yan Y, Nashath FZ, Chen S, Manickam S, Lim SS, Zhao H, Lester E, Wu T, Pang CH (2020) Synthesis of graphene: potential carbon precursors and approaches. Nanotechnol Rev 9(1):1284–1314CrossRef
Zurück zum Zitat Bohm S, Ingle A, Bohm HLM, Fenech-Salerno B, Wu S, Torrisi F (2021) Graphene production by cracking. Philos Trans R Soc A 379:20200293CrossRef Bohm S, Ingle A, Bohm HLM, Fenech-Salerno B, Wu S, Torrisi F (2021) Graphene production by cracking. Philos Trans R Soc A 379:20200293CrossRef
Zurück zum Zitat Islam MR, Parimalam M, Sumdani MG, Taher A, Asyadi F, & Yenn TW (2019) Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polymer Testing 81(2):106202 Islam MR, Parimalam M, Sumdani MG, Taher A, Asyadi F, & Yenn TW (2019) Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polymer Testing 81(2):106202
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, … Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, … Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568
Zurück zum Zitat Yao Y, Lin Z, Li Z, Song X, Moon K-S, Wong C (2012) Large-scale production of two-dimensional nanosheets. J Mater Chem 22(27):13494CrossRef Yao Y, Lin Z, Li Z, Song X, Moon K-S, Wong C (2012) Large-scale production of two-dimensional nanosheets. J Mater Chem 22(27):13494CrossRef
Zurück zum Zitat Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393CrossRef Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393CrossRef
Zurück zum Zitat Lee JH, Shim CM, Lee BS (2013) Graphene in edge-carboxylated graphite by ball milling and analyses using finite element method. Int J Mater Sci Applic 2(6):209–220 Lee JH, Shim CM, Lee BS (2013) Graphene in edge-carboxylated graphite by ball milling and analyses using finite element method. Int J Mater Sci Applic 2(6):209–220
Zurück zum Zitat Yi M, Shen Z, Zhu J (2014) A fluid dynamics route for producing graphene and its analogues. Chin Sci Bull 59(16):1794–1799CrossRef Yi M, Shen Z, Zhu J (2014) A fluid dynamics route for producing graphene and its analogues. Chin Sci Bull 59(16):1794–1799CrossRef
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453CrossRef
Zurück zum Zitat Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95CrossRef Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95CrossRef
Zurück zum Zitat Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625CrossRef Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625CrossRef
Zurück zum Zitat Torres L, Gomez Armas L, Carlos Seabra A (2014) Optimization of micromechanical cleavage technique of natural graphite by chemical treatment. Graphene 03(01):1–5CrossRef Torres L, Gomez Armas L, Carlos Seabra A (2014) Optimization of micromechanical cleavage technique of natural graphite by chemical treatment. Graphene 03(01):1–5CrossRef
Zurück zum Zitat Sinclair RC, Suter JL, Coveney PV (2019) Micromechanical exfoliation of graphene on the atomistic scale. Phys Chem Chem Phys 21:5716–5722CrossRef Sinclair RC, Suter JL, Coveney PV (2019) Micromechanical exfoliation of graphene on the atomistic scale. Phys Chem Chem Phys 21:5716–5722CrossRef
Zurück zum Zitat Hanny A, Islam MR, Sumdani MG, & Rashidi NM (2019) The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer Testing 78(6):105987 Hanny A, Islam MR, Sumdani MG, & Rashidi NM (2019) The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer Testing 78(6):105987
Zurück zum Zitat Cui X, Zhang C, Hao R, Hou Y (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3(5):2118CrossRef Cui X, Zhang C, Hao R, Hou Y (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3(5):2118CrossRef
Zurück zum Zitat Raju APA (2015) Production and applications of graphene and its composites. PhD thesis. The University of Manchester. Manchester Raju APA (2015) Production and applications of graphene and its composites. PhD thesis. The University of Manchester. Manchester
Zurück zum Zitat Lin L, Zheng X, Zhang S, Allwood DA (2014) Surface energy engineering in the solvothermal deoxidation of graphene oxide. Adv Mater Interfaces 1(3):1300078CrossRef Lin L, Zheng X, Zhang S, Allwood DA (2014) Surface energy engineering in the solvothermal deoxidation of graphene oxide. Adv Mater Interfaces 1(3):1300078CrossRef
Zurück zum Zitat Turner P, Hodnett M, Dorey R, Carey JD (2019) Controlled sonication as a route to in-situ graphene flake size control. Sci Rep 9:8710CrossRef Turner P, Hodnett M, Dorey R, Carey JD (2019) Controlled sonication as a route to in-situ graphene flake size control. Sci Rep 9:8710CrossRef
Zurück zum Zitat Polyakova (Stolyarova) EY, Rim KT, Eom D, Douglass K, Opila RL, Heinz TF, Flynn GW (2011) Scanning tunneling microscopy and x-ray photoelectron spectroscopy studies of graphene films prepared by sonication-assisted dispersion. ACS Nano 5(8):6102–6108 Polyakova (Stolyarova) EY, Rim KT, Eom D, Douglass K, Opila RL, Heinz TF, Flynn GW (2011) Scanning tunneling microscopy and x-ray photoelectron spectroscopy studies of graphene films prepared by sonication-assisted dispersion. ACS Nano 5(8):6102–6108
Zurück zum Zitat Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C 117(44):23272–23278CrossRef Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C 117(44):23272–23278CrossRef
Zurück zum Zitat Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4(2):027116CrossRef Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4(2):027116CrossRef
Zurück zum Zitat Yi M, Shen Z, Liang S, Liu L, Zhang X, Ma S (2013) Water can stably disperse liquid-exfoliated graphene. Chem Commun 49(94):11059CrossRef Yi M, Shen Z, Liang S, Liu L, Zhang X, Ma S (2013) Water can stably disperse liquid-exfoliated graphene. Chem Commun 49(94):11059CrossRef
Zurück zum Zitat Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118(28):15455–15459CrossRef Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118(28):15455–15459CrossRef
Zurück zum Zitat Durge R, Kshirsagar RV, Tambe P (2014) Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite. Procedia Eng 97:1457–1465CrossRef Durge R, Kshirsagar RV, Tambe P (2014) Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite. Procedia Eng 97:1457–1465CrossRef
Zurück zum Zitat Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef
Zurück zum Zitat Cunha E, Paiva MC (2019) Composite films of waterborne polyurethane and few-layer graphene—enhancing barrier, mechanical, and electrical properties. J Compos Sci 3:35CrossRef Cunha E, Paiva MC (2019) Composite films of waterborne polyurethane and few-layer graphene—enhancing barrier, mechanical, and electrical properties. J Compos Sci 3:35CrossRef
Zurück zum Zitat Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47–48):2172–2176CrossRef Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47–48):2172–2176CrossRef
Zurück zum Zitat Ge Y, Wang J, Shi Z, Yin J (2012) Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues. J Mater Chem 22(34):17619CrossRef Ge Y, Wang J, Shi Z, Yin J (2012) Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues. J Mater Chem 22(34):17619CrossRef
Zurück zum Zitat Zhang X, Wang L, Lu Q, Kaplan DL (2018) Mass production of biocompatible graphene using silk nanofibers. ACS Appl Mater Interfaces 10(27):22924–22931CrossRef Zhang X, Wang L, Lu Q, Kaplan DL (2018) Mass production of biocompatible graphene using silk nanofibers. ACS Appl Mater Interfaces 10(27):22924–22931CrossRef
Zurück zum Zitat Unalan IU, Wan C, Trabattoni S, Piergiovanni L, Farris S (2015) Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv 5(34):26482–26490CrossRef Unalan IU, Wan C, Trabattoni S, Piergiovanni L, Farris S (2015) Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv 5(34):26482–26490CrossRef
Zurück zum Zitat Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8:5567CrossRef Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8:5567CrossRef
Zurück zum Zitat Castillo AEDR, Pellegrini V, Ansaldo A, Ricciardella F, Sun H, Marasco L, Bonaccorso F (2018) High-yield production of 2D crystals by wet-jet milling. Mater Horiz 5:890–904CrossRef Castillo AEDR, Pellegrini V, Ansaldo A, Ricciardella F, Sun H, Marasco L, Bonaccorso F (2018) High-yield production of 2D crystals by wet-jet milling. Mater Horiz 5:890–904CrossRef
Zurück zum Zitat Li X, Shen J, Wu C, & Wu K (2019) Ball‐Mill‐Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small 15(48):1805567 Li X, Shen J, Wu C, & Wu K (2019) Ball‐Mill‐Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small 15(48):1805567
Zurück zum Zitat Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef
Zurück zum Zitat Xue Y, Chen H, Qu J, Dai L (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001CrossRef Xue Y, Chen H, Qu J, Dai L (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001CrossRef
Zurück zum Zitat Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2017) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8(10):1702383CrossRef Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2017) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8(10):1702383CrossRef
Zurück zum Zitat Zhu H, Cao Y, Zhang J, Zhang W, Xu Y, Guo J, … Liu J (2016) One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J Mater Sci 51(8):3675–3683 Zhu H, Cao Y, Zhang J, Zhang W, Xu Y, Guo J, … Liu J (2016) One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J Mater Sci 51(8):3675–3683
Zurück zum Zitat Aparna R, Sivakumar N, Balakrishnan A, Sreekumar Nair A, Nair SV, Subramanian KRV (2013) An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy 5(3):033123CrossRef Aparna R, Sivakumar N, Balakrishnan A, Sreekumar Nair A, Nair SV, Subramanian KRV (2013) An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy 5(3):033123CrossRef
Zurück zum Zitat Deng S, Qi X, Zhu Y, Zhou H, Chen F, Fu Q (2016) A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin J Polym Sci 34(10):1270–1280CrossRef Deng S, Qi X, Zhu Y, Zhou H, Chen F, Fu Q (2016) A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin J Polym Sci 34(10):1270–1280CrossRef
Zurück zum Zitat Huang G, Lv C, He J, Zhang X, Zhou C, Yang P, … Huang H (2020). Study on preparation and characterization of graphene based on ball milling method. J Nanomater 2020:1–11 Huang G, Lv C, He J, Zhang X, Zhou C, Yang P, … Huang H (2020). Study on preparation and characterization of graphene based on ball milling method. J Nanomater 2020:1–11
Zurück zum Zitat Poyato R, Verdugo R, Muñoz-Ferreiro C, Gallardo-López Á (2020) Electrochemically exfoliated graphene-like nanosheets for use in ceramic nanocomposites. Materials 13(11):2656CrossRef Poyato R, Verdugo R, Muñoz-Ferreiro C, Gallardo-López Á (2020) Electrochemically exfoliated graphene-like nanosheets for use in ceramic nanocomposites. Materials 13(11):2656CrossRef
Zurück zum Zitat León V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47(39):10936CrossRef León V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47(39):10936CrossRef
Zurück zum Zitat Liu L, Xiong Z, Hu D, Wu G, Chen P (2013) Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49(72):7890CrossRef Liu L, Xiong Z, Hu D, Wu G, Chen P (2013) Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49(72):7890CrossRef
Zurück zum Zitat Lv Y, Yu L, Jiang C, Chen S, Nie Z (2014) Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv 4(26):13350CrossRef Lv Y, Yu L, Jiang C, Chen S, Nie Z (2014) Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv 4(26):13350CrossRef
Zurück zum Zitat Alinejad B, Mahmoodi K (2017) Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Funct Mater Lett 10(04):1750047CrossRef Alinejad B, Mahmoodi K (2017) Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Funct Mater Lett 10(04):1750047CrossRef
Zurück zum Zitat Mahmoud AED, Stolle A, Stelter M (2018) Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain Chem Eng 6(5):6358–6369CrossRef Mahmoud AED, Stolle A, Stelter M (2018) Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain Chem Eng 6(5):6358–6369CrossRef
Zurück zum Zitat Dash P, Dash T, Rout TK, Sahu AK, Biswal SK, Mishra BK (2016) Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv 6(15):12657–12668CrossRef Dash P, Dash T, Rout TK, Sahu AK, Biswal SK, Mishra BK (2016) Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv 6(15):12657–12668CrossRef
Zurück zum Zitat Tran VQ, Doan HT, Nguyen NT, Do CV (2019) Preparation of graphene nanoplatelets by thermal shock combined with ball milling methods for fabricating flame-retardant polymers. J Chem 2019:1–6 Tran VQ, Doan HT, Nguyen NT, Do CV (2019) Preparation of graphene nanoplatelets by thermal shock combined with ball milling methods for fabricating flame-retardant polymers. J Chem 2019:1–6
Zurück zum Zitat Yang Q, Zhou M, Yang M, Zhang Z, Yu J, Zhang Y, … Li X (2020) High-yield production of few-layer graphene via new-fashioned strategy combining resonance ball milling and hydrothermal exfoliation. Nanomaterials 10(4):667 Yang Q, Zhou M, Yang M, Zhang Z, Yu J, Zhang Y, … Li X (2020) High-yield production of few-layer graphene via new-fashioned strategy combining resonance ball milling and hydrothermal exfoliation. Nanomaterials 10(4):667
Zurück zum Zitat Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, … Baek J-B (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593 Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, … Baek J-B (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593
Zurück zum Zitat Piras CC, Fernandez-Prieto S, De Borggraeve WM (2018) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947CrossRef Piras CC, Fernandez-Prieto S, De Borggraeve WM (2018) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947CrossRef
Zurück zum Zitat Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817CrossRef Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817CrossRef
Zurück zum Zitat Al-Sherbini A-S, Bakr M, Ghoneim I, Saad M (2017) Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene. J Adv Res 8(3):209–215CrossRef Al-Sherbini A-S, Bakr M, Ghoneim I, Saad M (2017) Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene. J Adv Res 8(3):209–215CrossRef
Zurück zum Zitat Borah M, Dahiya M, Sharma S, Mathur RB, Dhakate SR (2014) Few layer graphene derived from wet ball milling of expanded graphite and few layer graphene based polymer composite. Mater Focus 3(4):300–309CrossRef Borah M, Dahiya M, Sharma S, Mathur RB, Dhakate SR (2014) Few layer graphene derived from wet ball milling of expanded graphite and few layer graphene based polymer composite. Mater Focus 3(4):300–309CrossRef
Zurück zum Zitat Kim G-N, Kim J-H, Kim B-S, Jeong H-M, Huh S-C (2016) Study on the thermal conductivity characteristics of graphene prepared by the planetary ball mill. Metals 6(10):234CrossRef Kim G-N, Kim J-H, Kim B-S, Jeong H-M, Huh S-C (2016) Study on the thermal conductivity characteristics of graphene prepared by the planetary ball mill. Metals 6(10):234CrossRef
Zurück zum Zitat Zhuang S, Nunna BB, Boscoboinik JA, Lee ES (2017) Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed. Int J Energy Res 41(15):2535–2554CrossRef Zhuang S, Nunna BB, Boscoboinik JA, Lee ES (2017) Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed. Int J Energy Res 41(15):2535–2554CrossRef
Zurück zum Zitat Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48(31):3703CrossRef Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48(31):3703CrossRef
Zurück zum Zitat Yasmin L, Chen X, Stubbs KA, & Raston CL (2013) Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Scientific Reports 3(1):2282 Yasmin L, Chen X, Stubbs KA, & Raston CL (2013) Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Scientific Reports 3(1):2282
Zurück zum Zitat Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL (2013) Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem 15(3):650CrossRef Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL (2013) Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem 15(3):650CrossRef
Zurück zum Zitat Tran TS, Park SJ, Yoo SS, Lee T-R, Kim T (2016) High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv 6(15):12003–12008CrossRef Tran TS, Park SJ, Yoo SS, Lee T-R, Kim T (2016) High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv 6(15):12003–12008CrossRef
Zurück zum Zitat Blomquist N, Alimadadi M, Hummelgård M, Dahlström C, Olsen M, & Olin H (2019) Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene and nanographite in water. Scientific Reports 9(1):8966 Blomquist N, Alimadadi M, Hummelgård M, Dahlström C, Olsen M, & Olin H (2019) Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene and nanographite in water. Scientific Reports 9(1):8966
Zurück zum Zitat Yi M, Shen Z (2016) Fluid dynamics: an emerging route for the scalable production of graphene in the last five years. RSC Adv 6(76):72525–72536CrossRef Yi M, Shen Z (2016) Fluid dynamics: an emerging route for the scalable production of graphene in the last five years. RSC Adv 6(76):72525–72536CrossRef
Zurück zum Zitat Nacken TJ, Damm C, Walter J, Rüger A, Peukert W (2015) Delamination of graphite in a high pressure homogenizer. RSC Adv 5(71):57328–57338CrossRef Nacken TJ, Damm C, Walter J, Rüger A, Peukert W (2015) Delamination of graphite in a high pressure homogenizer. RSC Adv 5(71):57328–57338CrossRef
Zurück zum Zitat Liang S, Shen Z, Yi M, Liu L, Zhang X, Cai C, Ma S (2015) Effects of processing parameters on massive production of graphene by jet cavitation. J Nanosci Nanotechnol 15(4):2686–2694CrossRef Liang S, Shen Z, Yi M, Liu L, Zhang X, Cai C, Ma S (2015) Effects of processing parameters on massive production of graphene by jet cavitation. J Nanosci Nanotechnol 15(4):2686–2694CrossRef
Zurück zum Zitat Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, … Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630 Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, … Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630
Zurück zum Zitat Liu L, Shen Z, Yi M, Zhang X, Ma S (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4(69):36464–36470CrossRef Liu L, Shen Z, Yi M, Zhang X, Ma S (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4(69):36464–36470CrossRef
Zurück zum Zitat Le Ba T, Mahian O, Wongwises S et al (2020) Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim 142:1145–1172CrossRef Le Ba T, Mahian O, Wongwises S et al (2020) Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim 142:1145–1172CrossRef
Zurück zum Zitat Karu AE, Beer M (1966) Pyrolytic Formation of Highly Crystalline Graphite Films. J Appl Phys 37(5):2179–2181CrossRef Karu AE, Beer M (1966) Pyrolytic Formation of Highly Crystalline Graphite Films. J Appl Phys 37(5):2179–2181CrossRef
Zurück zum Zitat Feng X, Wu J, Bell AT, Salmeron M (2015) An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J Phys Chem C 119:7124–7129CrossRef Feng X, Wu J, Bell AT, Salmeron M (2015) An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J Phys Chem C 119:7124–7129CrossRef
Zurück zum Zitat Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8(2):565–570CrossRef Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8(2):565–570CrossRef
Zurück zum Zitat Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17):3856CrossRef Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17):3856CrossRef
Zurück zum Zitat Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 9:207–229CrossRef Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 9:207–229CrossRef
Zurück zum Zitat Bayram O (2019) A study on 3D graphene synthesized directly on Glass/FTO substrates: Its Raman mapping and optical properties. Ceramics International 45(14):16829–16835 Bayram O (2019) A study on 3D graphene synthesized directly on Glass/FTO substrates: Its Raman mapping and optical properties. Ceramics International 45(14):16829–16835
Zurück zum Zitat Shen B, Huang Z, Ji Z, Lin Q, Chen S, Cui D, & Zhang Z (2019) Bilayer graphene film synthesized by hot filament chemical vapor deposition as a nanoscale solid lubricant. Surface and Coatings Technology 380(3):125061 Shen B, Huang Z, Ji Z, Lin Q, Chen S, Cui D, & Zhang Z (2019) Bilayer graphene film synthesized by hot filament chemical vapor deposition as a nanoscale solid lubricant. Surface and Coatings Technology 380(3):125061
Zurück zum Zitat Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, … Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924 Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, … Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924
Zurück zum Zitat Chen M, Haddon RC, Yan R, Bekyarova E (2017) Advances in transferring chemical vapour deposition graphene: a review. Mater Horiz 4(6):1054–1063CrossRef Chen M, Haddon RC, Yan R, Bekyarova E (2017) Advances in transferring chemical vapour deposition graphene: a review. Mater Horiz 4(6):1054–1063CrossRef
Zurück zum Zitat Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209CrossRef Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209CrossRef
Zurück zum Zitat Zhang D, Jin Z, Shi J, Wang X, Peng S, Wang S (2015) The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem Commun 51(14):2987–2990CrossRef Zhang D, Jin Z, Shi J, Wang X, Peng S, Wang S (2015) The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem Commun 51(14):2987–2990CrossRef
Zurück zum Zitat Mafra DL, Ming T, Kong J (2015) Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 7(36):14807–14812CrossRef Mafra DL, Ming T, Kong J (2015) Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 7(36):14807–14812CrossRef
Zurück zum Zitat Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, … Mazumder P (2018) Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater 5(3):035022 Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, … Mazumder P (2018) Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater 5(3):035022
Zurück zum Zitat Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem 15(9):974CrossRef Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem 15(9):974CrossRef
Zurück zum Zitat Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–131CrossRef Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–131CrossRef
Zurück zum Zitat Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989CrossRef Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989CrossRef
Zurück zum Zitat Safavi A, Tohidi M, Mahyari FA, Shahbaazi H (2012) One-pot synthesis of large scale graphene nanosheets from graphite-liquid crystal composite via thermal treatment. J Mater Chem 22:3825–3831CrossRef Safavi A, Tohidi M, Mahyari FA, Shahbaazi H (2012) One-pot synthesis of large scale graphene nanosheets from graphite-liquid crystal composite via thermal treatment. J Mater Chem 22:3825–3831CrossRef
Zurück zum Zitat Dhakate SR et al (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49:1946–1954CrossRef Dhakate SR et al (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49:1946–1954CrossRef
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef
Zurück zum Zitat Sun W, Lu X, Tong Y, Zhang Z, Lei J, Nie G, Wang C (2014) Fabrication of highly dispersed palladium/graphene oxide nanocomposites and their catalytic properties for efficient hydrogenation of p-nitrophenol and hydrogen generation. Int J Hydrogen Energy 39(17):9080–9086CrossRef Sun W, Lu X, Tong Y, Zhang Z, Lei J, Nie G, Wang C (2014) Fabrication of highly dispersed palladium/graphene oxide nanocomposites and their catalytic properties for efficient hydrogenation of p-nitrophenol and hydrogen generation. Int J Hydrogen Energy 39(17):9080–9086CrossRef
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef
Zurück zum Zitat Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259 Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259
Zurück zum Zitat Staudenmaier L (1898) Process for the preparation of graphitic acid. Rep German Chem Soc 31(2):1481–1487 Staudenmaier L (1898) Process for the preparation of graphitic acid. Rep German Chem Soc 31(2):1481–1487
Zurück zum Zitat Muzyka R, Kwoka M, Smędowski Ł, Díez N, Gryglewicz G (2017) Oxidation of graphite by different modified Hummers methods. New Carbon Mater 32(1):15–20CrossRef Muzyka R, Kwoka M, Smędowski Ł, Díez N, Gryglewicz G (2017) Oxidation of graphite by different modified Hummers methods. New Carbon Mater 32(1):15–20CrossRef
Zurück zum Zitat Santamaría-Juárez G, Gomez Barojas E, Quiroga-González E, Sánchez-Mora E, Quintana M, & Santamaría-Juárez JD (2019) Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Materials Research Express 6(12):125631 Santamaría-Juárez G, Gomez Barojas E, Quiroga-González E, Sánchez-Mora E, Quintana M, & Santamaría-Juárez JD (2019) Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Materials Research Express 6(12):125631
Zurück zum Zitat Speranza G (2019) The Role of Functionalization in the applications of carbon materials: an overview. C– J Carbon Res 5(4):84CrossRef Speranza G (2019) The Role of Functionalization in the applications of carbon materials: an overview. C– J Carbon Res 5(4):84CrossRef
Zurück zum Zitat Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644CrossRef Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644CrossRef
Zurück zum Zitat Kim S, Song Y, Takahashi T, Oh T, Heller MJ (2015) An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38):5041–5046CrossRef Kim S, Song Y, Takahashi T, Oh T, Heller MJ (2015) An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38):5041–5046CrossRef
Zurück zum Zitat Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113(11):4257–4259CrossRef Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113(11):4257–4259CrossRef
Zurück zum Zitat Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRef Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRef
Zurück zum Zitat Wang Z, Li N, Shi Z, Gu Z (2010) Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17):175602CrossRef Wang Z, Li N, Shi Z, Gu Z (2010) Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17):175602CrossRef
Zurück zum Zitat Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Cheng H-M (2009) synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Cheng H-M (2009) synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef
Zurück zum Zitat Wu Y, Wang S, Komvopoulos K (2020) A review of graphene synthesis by indirect and direct deposition methods. J Mater Res 35(1):76–89CrossRef Wu Y, Wang S, Komvopoulos K (2020) A review of graphene synthesis by indirect and direct deposition methods. J Mater Res 35(1):76–89CrossRef
Zurück zum Zitat Presel F, Tetlow H, Bignardi L, Lacovig P, Tache CA, Lizzit S, … Baraldi A (2018) Graphene growth by molecular beam epitaxy: an interplay between desorption, diffusion and intercalation of elemental C species on islands. Nanoscale 10(16):7396–7406 Presel F, Tetlow H, Bignardi L, Lacovig P, Tache CA, Lizzit S, … Baraldi A (2018) Graphene growth by molecular beam epitaxy: an interplay between desorption, diffusion and intercalation of elemental C species on islands. Nanoscale 10(16):7396–7406
Zurück zum Zitat Wurstbauer U, Schiros T, Jaye C, Plaut AS, He R, Rigosi A, … Garcia JM (2012). Molecular beam growth of graphene nanocrystals on dielectric substrates. Carbon 50(13):4822–4829 Wurstbauer U, Schiros T, Jaye C, Plaut AS, He R, Rigosi A, … Garcia JM (2012). Molecular beam growth of graphene nanocrystals on dielectric substrates. Carbon 50(13):4822–4829
Zurück zum Zitat Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar M, … Spencer MG (2009) Free-standing epitaxial graphene. Nano Lett 9(9):3100–3105 Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar M, … Spencer MG (2009) Free-standing epitaxial graphene. Nano Lett 9(9):3100–3105
Zurück zum Zitat Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995CrossRef Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995CrossRef
Zurück zum Zitat Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207CrossRef Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207CrossRef
Zurück zum Zitat Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, … Torres T (2017) Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 46(15):4464–4500 Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, … Torres T (2017) Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 46(15):4464–4500
Zurück zum Zitat McMurry J, Fayl McCarty RC (2004) Chemistry. Pearson Education, New York McMurry J, Fayl McCarty RC (2004) Chemistry. Pearson Education, New York
Zurück zum Zitat Lide DR (2004) CRC Handbook of Chemistry and Physics, 85th edn. Taylor & Francis, New York Lide DR (2004) CRC Handbook of Chemistry and Physics, 85th edn. Taylor & Francis, New York
Zurück zum Zitat Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195CrossRef Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195CrossRef
Zurück zum Zitat Crescenzo AD, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690CrossRef Crescenzo AD, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690CrossRef
Zurück zum Zitat Wu S, Wang X, Li Z, Zhang S, Xing F (2020) Recent advances in the fabrication and application of graphene microfluidic sensors. Micromachines 11(12):1059CrossRef Wu S, Wang X, Li Z, Zhang S, Xing F (2020) Recent advances in the fabrication and application of graphene microfluidic sensors. Micromachines 11(12):1059CrossRef
Zurück zum Zitat Benda R, Zucchi G, Cancès E, Lebental B (2020) Insights into the π – π interaction driven non-covalent functionalization of carbon nanotubes of various diameters by conjugated fluorene and carbazole copolymers. J Chem Phys 152(6):064708CrossRef Benda R, Zucchi G, Cancès E, Lebental B (2020) Insights into the π – π interaction driven non-covalent functionalization of carbon nanotubes of various diameters by conjugated fluorene and carbazole copolymers. J Chem Phys 152(6):064708CrossRef
Zurück zum Zitat Faiza W, Firouzi A, Islam MR., Sumdani MG, & Taher A (2021) Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain. Polymer Composites 42(6):2717–2727 Faiza W, Firouzi A, Islam MR., Sumdani MG, & Taher A (2021) Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain. Polymer Composites 42(6):2717–2727
Zurück zum Zitat Mustaque AK, Kumar A, Zhang J, Kumar M (2021) Recent advances and prospects in reduced graphene oxide-based photodetectors. J Mater Chem C 9:8129–8157CrossRef Mustaque AK, Kumar A, Zhang J, Kumar M (2021) Recent advances and prospects in reduced graphene oxide-based photodetectors. J Mater Chem C 9:8129–8157CrossRef
Zurück zum Zitat Hani F, Firouzi A, Islam MR, & Sumdani MG (2020) Mechanical and thermal properties of fishbone‐based epoxy composites: The effects of thermal treatment. Polymer Composites 42(3):1224–12 Hani F, Firouzi A, Islam MR, & Sumdani MG (2020) Mechanical and thermal properties of fishbone‐based epoxy composites: The effects of thermal treatment. Polymer Composites 42(3):1224–12
Zurück zum Zitat Lee EC, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of Assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111(18):3446–3457CrossRef Lee EC, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of Assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111(18):3446–3457CrossRef
Zurück zum Zitat Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195CrossRef Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195CrossRef
Zurück zum Zitat Zheng W, Shen B, & Zhai W (2013) Surface Functionalization of Graphene with Polymers for Enhanced Properties, New Progress on Graphene Research, Gong JR, Intech Open Zheng W, Shen B, & Zhai W (2013) Surface Functionalization of Graphene with Polymers for Enhanced Properties, New Progress on Graphene Research, Gong JR, Intech Open
Zurück zum Zitat Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95(6):063302CrossRef Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95(6):063302CrossRef
Zurück zum Zitat An N, An Y, Hu Z, Guo B, Yang Y, Lei Z (2015) Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors. J Mater Chem A 3(44):22239–22246CrossRef An N, An Y, Hu Z, Guo B, Yang Y, Lei Z (2015) Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors. J Mater Chem A 3(44):22239–22246CrossRef
Zurück zum Zitat Xu L, Zhang Y, Zhou W, Jiang F, Zhang H, Jiang Q, … Duan X (2020) Fused Heterocyclic Molecules Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 12(40):45202–45213 Xu L, Zhang Y, Zhou W, Jiang F, Zhang H, Jiang Q, … Duan X (2020) Fused Heterocyclic Molecules Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 12(40):45202–45213
Zurück zum Zitat Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103CrossRef Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103CrossRef
Zurück zum Zitat Bocharov GS, Eletskii AV (2020) Percolation conduction of carbon nanocomposites. Int J Mol Sci 21(20):7634CrossRef Bocharov GS, Eletskii AV (2020) Percolation conduction of carbon nanocomposites. Int J Mol Sci 21(20):7634CrossRef
Zurück zum Zitat Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene Networks with low percolation threshold in abs nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260CrossRef Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene Networks with low percolation threshold in abs nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260CrossRef
Zurück zum Zitat Syamimi NF, Islam MR, Sumdani MG, & Rashidi NM (2019) Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polymer Bulletin 77(6):2573–2589 Syamimi NF, Islam MR, Sumdani MG, & Rashidi NM (2019) Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polymer Bulletin 77(6):2573–2589
Zurück zum Zitat Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477CrossRef Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477CrossRef
Zurück zum Zitat Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRef Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRef
Zurück zum Zitat Perumal S, Atchudan R, Edison TN, Shim J-J, Lee YR (2021) Exfoliation and noncovalent functionalization of graphene surface with poly-N-vinyl-2-pyrrolidone by in situ polymerization. Molecules 26(6):1534CrossRef Perumal S, Atchudan R, Edison TN, Shim J-J, Lee YR (2021) Exfoliation and noncovalent functionalization of graphene surface with poly-N-vinyl-2-pyrrolidone by in situ polymerization. Molecules 26(6):1534CrossRef
Zurück zum Zitat Park J, Yan M (2012) Covalent Functionalization of graphene with reactive intermediates. Accounts Chem Res 46(1):181–189CrossRef Park J, Yan M (2012) Covalent Functionalization of graphene with reactive intermediates. Accounts Chem Res 46(1):181–189CrossRef
Zurück zum Zitat Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, … Hirsch A (2011) Covalent bulk functionalization of graphene. Nat Chem 3(4):279–286 Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, … Hirsch A (2011) Covalent bulk functionalization of graphene. Nat Chem 3(4):279–286
Zurück zum Zitat Rojano SS (2016) Functionalization of carbon nanomaterials with nitrogen, halides and oxides. PhD thesis. Universitat Autònoma de Barcelona. Barcelona Rojano SS (2016) Functionalization of carbon nanomaterials with nitrogen, halides and oxides. PhD thesis. Universitat Autònoma de Barcelona. Barcelona
Zurück zum Zitat Daniel A, Islam MR, Sumdani MG, & Firouzi A (2020) Influence of hydration on the mechanical, structural, thermal, and morphological properties of cement filled epoxy composites. Journal of Vinyl and Additive Technology 27(1):119–126 Daniel A, Islam MR, Sumdani MG, & Firouzi A (2020) Influence of hydration on the mechanical, structural, thermal, and morphological properties of cement filled epoxy composites. Journal of Vinyl and Additive Technology 27(1):119–126
Zurück zum Zitat Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRef Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822CrossRef
Zurück zum Zitat Fraga TJM, Sobrinho MAdM, Carvalho MN, Ghislandi MG (2020) State of the art: synthesis and characterization of functionalized graphene nanomaterials. Nano Ex 1:022002 Fraga TJM, Sobrinho MAdM, Carvalho MN, Ghislandi MG (2020) State of the art: synthesis and characterization of functionalized graphene nanomaterials. Nano Ex 1:022002
Zurück zum Zitat Maio A, Pibiri I, Morreale M, Mantia FPL, Scaffaro R (2021) An overview of functionalized graphene nanomaterials for advanced applications. Nanomaterials. 11:1717CrossRef Maio A, Pibiri I, Morreale M, Mantia FPL, Scaffaro R (2021) An overview of functionalized graphene nanomaterials for advanced applications. Nanomaterials. 11:1717CrossRef
Zurück zum Zitat Zhu Y, Ji H, Cheng H-M, Ruoff RS (2017) Mass production and industrial applications of graphene materials. Natl Sci Rev 5(1):90–101CrossRef Zhu Y, Ji H, Cheng H-M, Ruoff RS (2017) Mass production and industrial applications of graphene materials. Natl Sci Rev 5(1):90–101CrossRef
Zurück zum Zitat Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188CrossRef Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188CrossRef
Zurück zum Zitat Ciesielski A, Samorì P (2014) Grapheneviasonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398CrossRef Ciesielski A, Samorì P (2014) Grapheneviasonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398CrossRef
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRef Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRef
Zurück zum Zitat Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499CrossRef
Zurück zum Zitat Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18(6):520–524CrossRef Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18(6):520–524CrossRef
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, … Iijima S (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578 Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, … Iijima S (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578
Zurück zum Zitat Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58–67CrossRef Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58–67CrossRef
Zurück zum Zitat Yoon HW, Cho YH, Park HB (2015) Graphene-based membranes: status and prospects. Philos Trans R Soc A Math Phys Eng Sci 374(2060):20150024CrossRef Yoon HW, Cho YH, Park HB (2015) Graphene-based membranes: status and prospects. Philos Trans R Soc A Math Phys Eng Sci 374(2060):20150024CrossRef
Zurück zum Zitat Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400CrossRef Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400CrossRef
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef
Zurück zum Zitat Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, … Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun (45):6919 Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, … Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun (45):6919
Zurück zum Zitat Jiang D, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024CrossRef Jiang D, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024CrossRef
Zurück zum Zitat Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4(17):5477CrossRef Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4(17):5477CrossRef
Zurück zum Zitat Ahmed F, Brajpuriya RK, Handa Y (2017) A review on graphene based solar cells. Int J Recent Sci Res 8(5):16893–16896CrossRef Ahmed F, Brajpuriya RK, Handa Y (2017) A review on graphene based solar cells. Int J Recent Sci Res 8(5):16893–16896CrossRef
Zurück zum Zitat Li X, Zhu H, Wang K, Cao A, Wei J, Li C, … Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748 Li X, Zhu H, Wang K, Cao A, Wei J, Li C, … Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748
Zurück zum Zitat Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223CrossRef Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223CrossRef
Zurück zum Zitat Czerniak-Reczulska M, Niedzielska A, Jędrzejczak A (2015) Graphene as a material for solar cells applications. Adv Mater Sci 15(4):67–81CrossRef Czerniak-Reczulska M, Niedzielska A, Jędrzejczak A (2015) Graphene as a material for solar cells applications. Adv Mater Sci 15(4):67–81CrossRef
Zurück zum Zitat Singla S, Sharma S, Basu S, Shetti NP, Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int J Hydrogen Energy 46(68):33696–33717CrossRef Singla S, Sharma S, Basu S, Shetti NP, Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int J Hydrogen Energy 46(68):33696–33717CrossRef
Zurück zum Zitat Singla S, Sharma S, Basu S, Shetti NP, & Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy 46(68):33696–33717 Singla S, Sharma S, Basu S, Shetti NP, & Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy 46(68):33696–33717
Zurück zum Zitat Lavorato C, Primo A, Molinari R, Garcia H (2013) N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chemistry - A Eur J 20(1):187–194CrossRef Lavorato C, Primo A, Molinari R, Garcia H (2013) N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chemistry - A Eur J 20(1):187–194CrossRef
Zurück zum Zitat Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801CrossRef Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801CrossRef
Zurück zum Zitat Yeh T-F, Cihlář J, Chang C-Y, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84CrossRef Yeh T-F, Cihlář J, Chang C-Y, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84CrossRef
Zurück zum Zitat Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90CrossRef Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90CrossRef
Zurück zum Zitat Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic h2-production activity of graphene/C3N4 composites. J Phys Chem C 115(15):7355–7363CrossRef Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic h2-production activity of graphene/C3N4 composites. J Phys Chem C 115(15):7355–7363CrossRef
Metadaten
Titel
Recent advances of the graphite exfoliation processes and structural modification of graphene: a review
verfasst von
M. G. Sumdani
M. R. Islam
A. N. A. Yahaya
S. I. Safie
Publikationsdatum
01.11.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2021
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-021-05371-6

Weitere Artikel der Ausgabe 11/2021

Journal of Nanoparticle Research 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.