Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2018

01.02.2018

The \(\left( \frac{\boldsymbol{G}^{\prime }}{\boldsymbol{G}},\frac{\boldsymbol{1}}{\boldsymbol{G}}\right)\)-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation

verfasst von: Elsayed M. E. Zayed, Ayad M. Shahoot, Khaled A. E. Alurrfi

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we apply the two variable \(\left( \frac{G^{\prime }}{G}, \frac{1}{G}\right)\)-expansion method with the aid of symbolic computation to construct many new exact solutions for two higher-order nonlinear partial differential equatuions (PDEs) namely, the higher-order nonlinear Schrö dinger (NLS) equation with derivative non-kerr nonlinear terms describing pulse of the propagation beyond ultrashort range in optical communication systems and the higher-order nonlinear quantum Zakharov–Kuznetsov (QZK) equation which arises in quantum magneto plasma . Also, based on Liénard equation, we find many other diffrent new soliton solutions of the above NLS equation. Soliton solutions, periodic solutions, rational functions solutions and Jacobi elliptic functions solutions are obtained. Comparing our new solutions obtained in this article with the well-known solutions are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bekir, A.: Application of the \((\frac{G}{G}^{\prime })\) -expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008)ADSMathSciNetCrossRefMATH Bekir, A.: Application of the \((\frac{G}{G}^{\prime })\) -expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Bekir, A., Unsal, O.: Analytic treatment of nonlinear evolution equations using first integral method. Pramana J. Phys. 79, 3–17 (2012)ADSCrossRefMATH Bekir, A., Unsal, O.: Analytic treatment of nonlinear evolution equations using first integral method. Pramana J. Phys. 79, 3–17 (2012)ADSCrossRefMATH
Zurück zum Zitat Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1) -dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745–757 (2005)ADSMathSciNetCrossRefMATH Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1) -dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745–757 (2005)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84, 669–676 (2016)MathSciNetCrossRefMATH Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84, 669–676 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Li, L.X., Li, Q.E., Wang, L.M.: The \((\frac{G}{G}^{\prime }, \frac{1}{G})\)-expansion method and its application to traveling wave solutions of the Zakharov equations. Appl. Math J. Chin. Univ. 25, 454–462 (2010)CrossRef Li, L.X., Li, Q.E., Wang, L.M.: The \((\frac{G}{G}^{\prime }, \frac{1}{G})\)-expansion method and its application to traveling wave solutions of the Zakharov equations. Appl. Math J. Chin. Univ. 25, 454–462 (2010)CrossRef
Zurück zum Zitat Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNetCrossRefMATH Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Lu, B.H.Q., Zhang, H.Q., Xie, F.D.: Traveling wave solutions of nonlinear partial differential equations by using the first integral method. Appl. Math. Comput. 216, 1329–1336 (2010)MathSciNetCrossRefMATH Lu, B.H.Q., Zhang, H.Q., Xie, F.D.: Traveling wave solutions of nonlinear partial differential equations by using the first integral method. Appl. Math. Comput. 216, 1329–1336 (2010)MathSciNetCrossRefMATH
Zurück zum Zitat Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015a)MathSciNetCrossRefMATH Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015a)MathSciNetCrossRefMATH
Zurück zum Zitat Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015b)CrossRefMATH Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015b)CrossRefMATH
Zurück zum Zitat Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978) Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978)
Zurück zum Zitat Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, : Solitary, explosive, and periodic solutions of the quantum Zakharov–Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 082308 (2007)ADSCrossRef Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, : Solitary, explosive, and periodic solutions of the quantum Zakharov–Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 082308 (2007)ADSCrossRef
Zurück zum Zitat Raslan, H.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53, 281–291 (2008)MathSciNetCrossRefMATH Raslan, H.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53, 281–291 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)MATH Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)MATH
Zurück zum Zitat Singh, S.S.: Exact solutions of Kundu-Eckhaus equation and Rangwala-Rao equation by reduction to Liénard equation. Asian J. Math. Phys., Article ID ama0301, 11 pages (2016) Singh, S.S.: Exact solutions of Kundu-Eckhaus equation and Rangwala-Rao equation by reduction to Liénard equation. Asian J. Math. Phys., Article ID ama0301, 11 pages (2016)
Zurück zum Zitat Sirendaoreji, S.: A new auxiliary equation and exact travelling wave solutions of nonlinear equations. Phys. Lett. A 356, 124–130 (2006)ADSCrossRefMATH Sirendaoreji, S.: A new auxiliary equation and exact travelling wave solutions of nonlinear equations. Phys. Lett. A 356, 124–130 (2006)ADSCrossRefMATH
Zurück zum Zitat Sirendaoreji, S.: Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys. Lett. A 363, 440–447 (2007b)ADSMathSciNetCrossRefMATH Sirendaoreji, S.: Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys. Lett. A 363, 440–447 (2007b)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Taghizadeh, N., Mirzazadeh, M., Farahrooz, F.: Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 374, 549–553 (2011)MathSciNetCrossRefMATH Taghizadeh, N., Mirzazadeh, M., Farahrooz, F.: Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 374, 549–553 (2011)MathSciNetCrossRefMATH
Zurück zum Zitat Wang, M.L., Li, X., Zhang, J.: The \((\frac{G}{G}^{\prime })\) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSMathSciNetCrossRef Wang, M.L., Li, X., Zhang, J.: The \((\frac{G}{G}^{\prime })\) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)ADSCrossRef Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)ADSCrossRef
Zurück zum Zitat Wu, X.H., He, J.H.: Solitary solutions periodic solutions and compacton-like solutions using Exp-function method. Comput. Math. Appl. 54, 966–986 (2007)MathSciNetCrossRefMATH Wu, X.H., He, J.H.: Solitary solutions periodic solutions and compacton-like solutions using Exp-function method. Comput. Math. Appl. 54, 966–986 (2007)MathSciNetCrossRefMATH
Zurück zum Zitat Xu, G.: Extended auxiliary equation method and its applications to three generalized NLS equations. Abst. Appl. Anal. 2014, Article ID 541370, 7 (2014) Xu, G.: Extended auxiliary equation method and its applications to three generalized NLS equations. Abst. Appl. Anal. 2014, Article ID 541370, 7 (2014)
Zurück zum Zitat Zayed, E.M.E.: The \((\frac{G}{G}^{\prime })\)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30, 89–103 (2009)MathSciNetCrossRefMATH Zayed, E.M.E.: The \((\frac{G}{G}^{\prime })\)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30, 89–103 (2009)MathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: The \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method and its applications to find the exact solutions of nonlinear PDEs for nanobiosciences, Math. Prob. Engineering, 2014, Article ID 521712, 10 pages (2014a) Zayed, E.M.E., Alurrfi, K.A.E.: The \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method and its applications to find the exact solutions of nonlinear PDEs for nanobiosciences, Math. Prob. Engineering, 2014, Article ID 521712, 10 pages (2014a)
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: On solving the nonlinear Schrödinger-Boussinesq equation and the hyperbolic Schrödinger equation by using the \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method. Int. J. Phys. Sci. 19, 415–429 (2014b) Zayed, E.M.E., Alurrfi, K.A.E.: On solving the nonlinear Schrödinger-Boussinesq equation and the hyperbolic Schrödinger equation by using the \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method. Int. J. Phys. Sci. 19, 415–429 (2014b)
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. Chao, Solitons and Fractals 78, 148–155 (2015a)ADSMathSciNetCrossRefMATH Zayed, E.M.E., Alurrfi, K.A.E.: A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. Chao, Solitons and Fractals 78, 148–155 (2015a)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method. Ric. mat. 64, 167–194 (2015b)MathSciNetCrossRefMATH Zayed, E.M.E., Alurrfi, K.A.E.: On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method. Ric. mat. 64, 167–194 (2015b)MathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: Extended generalized \(( \frac{G}{G}^{\prime })\)-expansion method for solving the nonlinear quantum Zakharov–Kuznetsov equation. Ricerche Mat. 65, 235–254 (2016a)MathSciNetCrossRefMATH Zayed, E.M.E., Alurrfi, K.A.E.: Extended generalized \(( \frac{G}{G}^{\prime })\)-expansion method for solving the nonlinear quantum Zakharov–Kuznetsov equation. Ricerche Mat. 65, 235–254 (2016a)MathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: The \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method and its applications to two nonlinear Schr ödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. Optik 127, 1581–1589 (2016b)ADSCrossRef Zayed, E.M.E., Alurrfi, K.A.E.: The \((\frac{G}{G}^{\prime },\frac{1}{G})\)-expansion method and its applications to two nonlinear Schr ödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. Optik 127, 1581–1589 (2016b)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016c)MathSciNet Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016c)MathSciNet
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: The Bäcklund transformation of the Riccati equation and its applications to the generalized KdV–mKdV equation with any-order nonlinear terms. Pan Am. Math. J. 26, 50–62 (2016d)MATH Zayed, E.M.E., Alurrfi, K.A.E.: The Bäcklund transformation of the Riccati equation and its applications to the generalized KdV–mKdV equation with any-order nonlinear terms. Pan Am. Math. J. 26, 50–62 (2016d)MATH
Zurück zum Zitat Zayed, E.M.E., Alurrfi, K.A.E.: Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method. Optik 144, 132–148 (2017)ADSCrossRef Zayed, E.M.E., Alurrfi, K.A.E.: Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method. Optik 144, 132–148 (2017)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, A.-G.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Media 27, 420–439 (2017a)CrossRef Zayed, E.M.E., Al-Nowehy, A.-G.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Media 27, 420–439 (2017a)CrossRef
Zurück zum Zitat Zayed, E.M.E., Al-Nowehy, A.-G.: Solitons and other exact solutions for a class of nonlinear Schrödinger-type equations. Optik 130, 1295–1311 (2017b)ADSCrossRef Zayed, E.M.E., Al-Nowehy, A.-G.: Solitons and other exact solutions for a class of nonlinear Schrödinger-type equations. Optik 130, 1295–1311 (2017b)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Amer, Y.A.: The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrödinger equation. Comput. Math. Model. 27, 80–94 (2016)MathSciNetCrossRefMATH Zayed, E.M.E., Amer, Y.A.: The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrödinger equation. Comput. Math. Model. 27, 80–94 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Zayed, E.M.E., Gepreel, K.A.: The \((\frac{G}{G}^{\prime })\) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502–013512 (2009)ADSMathSciNetCrossRef Zayed, E.M.E., Gepreel, K.A.: The \((\frac{G}{G}^{\prime })\) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502–013512 (2009)ADSMathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Hoda Ibrahim, S.A., Abdelaziz, M.A.M.: Traveling wave solutions of the nonlinear (3 \(+\) 1) dimensional Kadomtsev–Petviashvili equation using the two variables \((\frac{G}{G} ^{\prime },\frac{1}{G})\)-expansion method. J. Appl. Math. 2012, Article ID 560531, 8 pages (2012) Zayed, E.M.E., Hoda Ibrahim, S.A., Abdelaziz, M.A.M.: Traveling wave solutions of the nonlinear (3 \(+\) 1) dimensional Kadomtsev–Petviashvili equation using the two variables \((\frac{G}{G} ^{\prime },\frac{1}{G})\)-expansion method. J. Appl. Math. 2012, Article ID 560531, 8 pages (2012)
Zurück zum Zitat Zeng, X., Yong, X.: A new mapping method and its applications to nonlinear partial differential equations. Phys. Lett. A 372, 6602–6607 (2008)ADSMathSciNetCrossRefMATH Zeng, X., Yong, X.: A new mapping method and its applications to nonlinear partial differential equations. Phys. Lett. A 372, 6602–6607 (2008)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Zhang, S.: Application of Exp-function method to high-dimensional nonlinear evolution equation. Chaos Solitons Fractals 38, 270–276 (2008)ADSMathSciNetCrossRefMATH Zhang, S.: Application of Exp-function method to high-dimensional nonlinear evolution equation. Chaos Solitons Fractals 38, 270–276 (2008)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Zhang, S., Tong, J.L., Wang, W.: A generalized \((\frac{G}{G} ^{\prime })\)-expansion method for the mKdV equation with variable coefficients. Phys. Lett. A 372, 2254–2257 (2008)ADSCrossRefMATH Zhang, S., Tong, J.L., Wang, W.: A generalized \((\frac{G}{G} ^{\prime })\)-expansion method for the mKdV equation with variable coefficients. Phys. Lett. A 372, 2254–2257 (2008)ADSCrossRefMATH
Zurück zum Zitat Zhang, B., Liu, Z., Xiaob, Q.: New exact solitary wave and multiple soliton solutions of quantum Zakharov–Kuznetsov equation. Appl. Math. Comput. 217, 392–402 (2010)MathSciNetCrossRefMATH Zhang, B., Liu, Z., Xiaob, Q.: New exact solitary wave and multiple soliton solutions of quantum Zakharov–Kuznetsov equation. Appl. Math. Comput. 217, 392–402 (2010)MathSciNetCrossRefMATH
Metadaten
Titel
The -expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation
verfasst von
Elsayed M. E. Zayed
Ayad M. Shahoot
Khaled A. E. Alurrfi
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1337-z

Weitere Artikel der Ausgabe 2/2018

Optical and Quantum Electronics 2/2018 Zur Ausgabe