Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2018

01.02.2018

Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation

verfasst von: Mustafa Inc, Abdullahi Yusuf, Aliyu Isa Aliyu, Dumitru Baleanu

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we study the time fractional generalized BurgersHuxley equation with Riemann–Liouville derivative via Lie symmetry analysis and power series expansion method. We transform the governing equation to nonlinear ordinary differential equation of fractional order using its Lie point symmetries. In the reduced equation, the derivative is in Erdelyi–Kober sense. We apply power series technique to derive explicit solutions for the reduced equation. The convergence of the obtained power series solutions are also derived. Some interesting Figures for the obtained solutions are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers–Huxley equation. Nonlinear Stud. 24(1), 235–244 (2017)MathSciNetMATH Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional BurgersHuxley equation. Nonlinear Stud. 24(1), 235–244 (2017)MathSciNetMATH
Zurück zum Zitat Az-Zobi, E.: On the reduced differential transform method and its application to the generalized Burgers–Huxley equation. Appl. Math. Sci. 8(177), 8823–8831 (2014) Az-Zobi, E.: On the reduced differential transform method and its application to the generalized BurgersHuxley equation. Appl. Math. Sci. 8(177), 8823–8831 (2014)
Zurück zum Zitat Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov–Kuznetsov equation. Nonlinear Anal. Model. Control 22(6), 861–876 (2017)MathSciNetCrossRef Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov–Kuznetsov equation. Nonlinear Anal. Model. Control 22(6), 861–876 (2017)MathSciNetCrossRef
Zurück zum Zitat Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 59, 222–234 (2018)MathSciNetCrossRef Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 59, 222–234 (2018)MathSciNetCrossRef
Zurück zum Zitat Batiha, B., Noorani, M.S.M., Hashim, I.: Application of variational iteration method to the generalized Burgers–Huxley equation. Chaos Solitons Fract. 36(3), 660–663 (2008)CrossRefMATHADS Batiha, B., Noorani, M.S.M., Hashim, I.: Application of variational iteration method to the generalized BurgersHuxley equation. Chaos Solitons Fract. 36(3), 660–663 (2008)CrossRefMATHADS
Zurück zum Zitat Biswas, A., Suarez, P.: Exact 1-soliton solution of the zakharov-kuznetsov equation in plasmas with power law nonlinearity. Appl. Math. Comput. 217(17), 7372–7375 (2011)MathSciNetCrossRefMATH Biswas, A., Suarez, P.: Exact 1-soliton solution of the zakharov-kuznetsov equation in plasmas with power law nonlinearity. Appl. Math. Comput. 217(17), 7372–7375 (2011)MathSciNetCrossRefMATH
Zurück zum Zitat Biswas A, Morris R, Kara AH (2013) Soliton solution and conservation laws of the Zakharov-Kuznetsov equation in plasmas with power law nonlinearity Biswas A, Morris R, Kara AH (2013) Soliton solution and conservation laws of the Zakharov-Kuznetsov equation in plasmas with power law nonlinearity
Zurück zum Zitat Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)ADS Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)ADS
Zurück zum Zitat Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)CrossRefMATH Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)CrossRefMATH
Zurück zum Zitat Cenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 27, 103–116 (2017)MathSciNetCrossRefMATH Cenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 27, 103–116 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)CrossRefMATH Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)CrossRefMATH
Zurück zum Zitat Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127, 10659–10669 (2016)CrossRefADS Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127, 10659–10669 (2016)CrossRefADS
Zurück zum Zitat Ekici, M., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83(1–2), 731–738 (2017)MathSciNetMATH Ekici, M., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83(1–2), 731–738 (2017)MathSciNetMATH
Zurück zum Zitat Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)MathSciNet Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)MathSciNet
Zurück zum Zitat Eslami, M., Mirzazadeh, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)MathSciNetCrossRef Eslami, M., Mirzazadeh, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)MathSciNetCrossRef
Zurück zum Zitat Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefMATH Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical soliton pertubation with fractional temporal evolution by first integral method with conformabal fractional derivatives. Optik 127(22), 10659–10669 (2016)CrossRefADS Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical soliton pertubation with fractional temporal evolution by first integral method with conformabal fractional derivatives. Optik 127(22), 10659–10669 (2016)CrossRefADS
Zurück zum Zitat Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavei, S.S.: Exact solutions to the space-time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49(8) (2017b). https://doi.org/10.1007/s11082-017-1112-6 Eslami, M., Rezazadeh, H., Rezazadeh, M., Mosavei, S.S.: Exact solutions to the space-time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov–Kuznetsov equation. Opt. Quantum Electron. 49(8) (2017b). https://​doi.​org/​10.​1007/​s11082-017-1112-6
Zurück zum Zitat Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, Boca Raton, Florida (2006)MATH Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, Boca Raton, Florida (2006)MATH
Zurück zum Zitat Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestnik USATU 9, 125–135 (2007) Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestnik USATU 9, 125–135 (2007)
Zurück zum Zitat Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. 136, 014–016 (2009) Gazizov, R.K., Kasatkin, A.A., Lukashcuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. 136, 014–016 (2009)
Zurück zum Zitat Guo, S., Mei, L.Q., Li, Y., Sun, Y.F.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)MathSciNetCrossRefMATHADS Guo, S., Mei, L.Q., Li, Y., Sun, Y.F.: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407–411 (2012)MathSciNetCrossRefMATHADS
Zurück zum Zitat Hashim, I., Noorani, M.S.M., Al-Hadidi, M.R.S.: Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Math. Comput. Model. 43, 1404–1411 (2006)MathSciNetCrossRefMATH Hashim, I., Noorani, M.S.M., Al-Hadidi, M.R.S.: Solving the generalized BurgersHuxley equation using the Adomian decomposition method. Math. Comput. Model. 43, 1404–1411 (2006)MathSciNetCrossRefMATH
Zurück zum Zitat Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media 27, 628–636 (2017)MathSciNetCrossRef Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media 27, 628–636 (2017)MathSciNetCrossRef
Zurück zum Zitat Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (ϕ (η)/2)-expansion method and exp function approach. Optik 158, 933–939 (2018)CrossRefADS Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (ϕ (η)/2)-expansion method and exp function approach. Optik 158, 933–939 (2018)CrossRefADS
Zurück zum Zitat Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1994)MATH Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1994)MATH
Zurück zum Zitat Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca Raton (1995)MATH Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca Raton (1995)MATH
Zurück zum Zitat Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996) Ibragimov, N.H.: Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996)
Zurück zum Zitat Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis. Phys. A 493, 94–106 (2018a)MathSciNetCrossRef Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis. Phys. A 493, 94–106 (2018a)MathSciNetCrossRef
Zurück zum Zitat Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non differentiable functions further results. Comput. Math Appl. 51, 1367–1376 (2006)MathSciNetCrossRefMATH Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non differentiable functions further results. Comput. Math Appl. 51, 1367–1376 (2006)MathSciNetCrossRefMATH
Zurück zum Zitat Jumarie, G.: Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)MathSciNetCrossRefMATH Jumarie, G.: Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)MathSciNetCrossRefMATH
Zurück zum Zitat Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1994) Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1994)
Zurück zum Zitat Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1996) Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, London (1996)
Zurück zum Zitat Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. Log. 6(3), 328–368 (1881)MATH Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. Log. 6(3), 328–368 (1881)MATH
Zurück zum Zitat Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131, 317–330 (2013)MathSciNetCrossRefMATH Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131, 317–330 (2013)MathSciNetCrossRefMATH
Zurück zum Zitat Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045–2048 (2012)MathSciNetCrossRefMATHADS Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045–2048 (2012)MathSciNetCrossRefMATHADS
Zurück zum Zitat Mirzazadeh, M., Eslami, M., Vajargah, B.F., Biswas, A.: Application of the first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177–184 (2014)CrossRefADS Mirzazadeh, M., Eslami, M., Vajargah, B.F., Biswas, A.: Application of the first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177–184 (2014)CrossRefADS
Zurück zum Zitat Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84(2), 669–676 (2016)MathSciNetCrossRefMATH Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84(2), 669–676 (2016)MathSciNetCrossRefMATH
Zurück zum Zitat Mirzazadeh, M., Eslami, M., Zerrad, E.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81(4), 1933–1949 (2017)MathSciNetCrossRefMATH Mirzazadeh, M., Eslami, M., Zerrad, E.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81(4), 1933–1949 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Neirameh, A., Eslami, M.: An analytical method for finding exact solitary wave solutions of the coupled (2 + 1)-dimensional Painlevé Burgers equation, Scientia Iranica. Trans. B Mech. Eng. 24(2), 715–726 (2017) Neirameh, A., Eslami, M.: An analytical method for finding exact solitary wave solutions of the coupled (2 + 1)-dimensional Painlevé Burgers equation, Scientia Iranica. Trans. B Mech. Eng. 24(2), 715–726 (2017)
Zurück zum Zitat Olver, P.J.: Application of Lie Group to Differential Equation. Springer, New York (1986)CrossRef Olver, P.J.: Application of Lie Group to Differential Equation. Springer, New York (1986)CrossRef
Zurück zum Zitat Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)MATH Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)MATH
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
Zurück zum Zitat Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau–Haynam equation. Commun. Theor. Phys. 67, 157–165 (2017)CrossRefMATHADS Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau–Haynam equation. Commun. Theor. Phys. 67, 157–165 (2017)CrossRefMATHADS
Zurück zum Zitat Rudin, W.: Principles of Mathematic Analysis. China Machine Press, Beijing (2004) Rudin, W.: Principles of Mathematic Analysis. China Machine Press, Beijing (2004)
Zurück zum Zitat Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)MathSciNetCrossRefMATH Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)MathSciNetCrossRefMATH
Zurück zum Zitat Sonomezoglu, A., Eslami, M., Zhou, Q., Zerrad, E., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical solitons in nano-fibers with fractional temporal evolution. J. Comput. Theor. Nanosci. 13(8), 5361–5374 (2016a)CrossRef Sonomezoglu, A., Eslami, M., Zhou, Q., Zerrad, E., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Optical solitons in nano-fibers with fractional temporal evolution. J. Comput. Theor. Nanosci. 13(8), 5361–5374 (2016a)CrossRef
Zurück zum Zitat Sonomezoglu, A., Ortakaya, S., Eslami, M., Biswas, A., Mirzazadeh, M., Ekici, M.: Solitons solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics. Eur. Phys. J. Plus 131(6), 166–177 (2016b) Sonomezoglu, A., Ortakaya, S., Eslami, M., Biswas, A., Mirzazadeh, M., Ekici, M.: Solitons solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics. Eur. Phys. J. Plus 131(6), 166–177 (2016b)
Zurück zum Zitat Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320–336 (2017)CrossRefADS Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320–336 (2017)CrossRefADS
Zurück zum Zitat Vajargah, B.F., Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana 82(3), 465–476 (2014)CrossRefADS Vajargah, B.F., Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana 82(3), 465–476 (2014)CrossRefADS
Zurück zum Zitat Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013a)MathSciNetCrossRefMATHADS Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013a)MathSciNetCrossRefMATHADS
Zurück zum Zitat Wang, G., Liu, X., Zhang, Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun Nonlinear Sci Numer Simulat 18, 2321–2326 (2013b)MathSciNetCrossRefMATHADS Wang, G., Liu, X., Zhang, Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun Nonlinear Sci Numer Simulat 18, 2321–2326 (2013b)MathSciNetCrossRefMATHADS
Zurück zum Zitat Wang, G., Kara, A.H., Fakhar, K.: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 82, 281–287 (2015)MathSciNetCrossRefMATH Wang, G., Kara, A.H., Fakhar, K.: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 82, 281–287 (2015)MathSciNetCrossRefMATH
Zurück zum Zitat Wazwaz, A.M.: Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)MathSciNetCrossRefMATH Wazwaz, A.M.: Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)MathSciNetCrossRefMATH
Zurück zum Zitat Zerrad, E., Biswas, A., Kohl, R., Milovic, D.: Optical solitons by he’s variational principle in a non-kerr law media. J. Infrared Millim. Terahertz Waves 30(5), 526–537 (2009)CrossRef Zerrad, E., Biswas, A., Kohl, R., Milovic, D.: Optical solitons by he’s variational principle in a non-kerr law media. J. Infrared Millim. Terahertz Waves 30(5), 526–537 (2009)CrossRef
Zurück zum Zitat Zerrad, E., Biswas, A., Song, M., Ahmed, B.: Domain wall and bifurcation analysis of the Klein-Gordon Zakharov–Kuznetsov equation in (1 + 2)-dimensions with power law nonlinearity. Chaos 23(3) (2013). https://doi.org/10.1063/1.4816346 Zerrad, E., Biswas, A., Song, M., Ahmed, B.: Domain wall and bifurcation analysis of the Klein-Gordon Zakharov–Kuznetsov equation in (1 + 2)-dimensions with power law nonlinearity. Chaos 23(3) (2013). https://​doi.​org/​10.​1063/​1.​4816346
Zurück zum Zitat Zhang, S., Zhang, H.Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)MathSciNetCrossRefMATHADS Zhang, S., Zhang, H.Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)MathSciNetCrossRefMATHADS
Zurück zum Zitat Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Solitons in optical metamaterials with fractional temporal evolution. Optik 127(22), 10879–10897 (2016)CrossRef Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M., Ekici, M., Mirzazadeh, M.: Solitons in optical metamaterials with fractional temporal evolution. Optik 127(22), 10879–10897 (2016)CrossRef
Metadaten
Titel
Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation
verfasst von
Mustafa Inc
Abdullahi Yusuf
Aliyu Isa Aliyu
Dumitru Baleanu
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1373-8

Weitere Artikel der Ausgabe 2/2018

Optical and Quantum Electronics 2/2018 Zur Ausgabe