Skip to main content
Erschienen in: Optical and Quantum Electronics 8/2019

01.08.2019

Triangle grating for enhancement the efficiency in thin film photovoltaic solar cells

verfasst von: Bedir Yousif, Mohy Eldin A. Abo-Elsoud, Hagar Marouf

Erschienen in: Optical and Quantum Electronics | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies the different surface grating shape and their effects on the optical, electrical properties and efficiency of thin film solar cell model. The semiconductor transport model is applied for solving the electrical properties, whereas the optical effect was added using electromagnetic modeling. The efficiency of the model using triangle grating was 12.24% and in the model without grating was 7.75%. The PV efficiency was improved by 4.51% in case of triangle grating. The maximum power observed in triangle grating is 12.5 [mW] that makes difference with [5 mW] than without grating model, and also the current density is 12.5 [mA/cm2]. The absorbance coefficient of the two models enhanced by 20% increase on photon absorbance in the modeled solar cell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bagher, A.M., Vahid, M.M.A., Mohsen, M.: Types of solar cells and application. Am. J. Opt. Photonics 3, 94–113 (2015)CrossRef Bagher, A.M., Vahid, M.M.A., Mohsen, M.: Types of solar cells and application. Am. J. Opt. Photonics 3, 94–113 (2015)CrossRef
Zurück zum Zitat Battaglia, C., et al.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012)CrossRef Battaglia, C., et al.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012)CrossRef
Zurück zum Zitat Beck, N., et al.: Mobility lifetime product—a tool for correlating a-Si:H film properties and solar cell performances. J. Appl. Phys. 79(12), 9361–9368 (1996)ADSCrossRef Beck, N., et al.: Mobility lifetime product—a tool for correlating a-Si:H film properties and solar cell performances. J. Appl. Phys. 79(12), 9361–9368 (1996)ADSCrossRef
Zurück zum Zitat Bog, U., Huska, K., Maerkle, F., Nesterov-Mueller, A., Lemmer, U., Mappes, T.: Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Opt. Express 20(10), 11357–11369 (2012)ADSCrossRef Bog, U., Huska, K., Maerkle, F., Nesterov-Mueller, A., Lemmer, U., Mappes, T.: Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications. Opt. Express 20(10), 11357–11369 (2012)ADSCrossRef
Zurück zum Zitat Burkhard, G.F., Hoke, E.T., Scully, S.R., McGehee, M.D.: Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. Nano Lett. 9(12), 4037–4041 (2009)ADSCrossRef Burkhard, G.F., Hoke, E.T., Scully, S.R., McGehee, M.D.: Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. Nano Lett. 9(12), 4037–4041 (2009)ADSCrossRef
Zurück zum Zitat Castellano, R.: Solar Panel Processing, chapter 2. Old City Publishing Inc., Philadelphia (2010) Castellano, R.: Solar Panel Processing, chapter 2. Old City Publishing Inc., Philadelphia (2010)
Zurück zum Zitat Chopra, K.L., Paulson, P.D., Dutt, V.: Thin-film solar cells: an overview. Prog. Photovolt. 12, 69–92 (2004)CrossRef Chopra, K.L., Paulson, P.D., Dutt, V.: Thin-film solar cells: an overview. Prog. Photovolt. 12, 69–92 (2004)CrossRef
Zurück zum Zitat Choubey, P.C., Oudhia, A., Dewangan, R.: A review: solar cell current scenario and future trends. Recent Res. Sci. Technol. 4, 99–101 (2012) Choubey, P.C., Oudhia, A., Dewangan, R.: A review: solar cell current scenario and future trends. Recent Res. Sci. Technol. 4, 99–101 (2012)
Zurück zum Zitat Dhawan, A., Canva, M., Vo-dinh, T., Groove, N.: Plasmonic nano gratings for surface plasmon resonance sensing. Opt. Express 19(2), 787–813 (2011)ADSCrossRef Dhawan, A., Canva, M., Vo-dinh, T., Groove, N.: Plasmonic nano gratings for surface plasmon resonance sensing. Opt. Express 19(2), 787–813 (2011)ADSCrossRef
Zurück zum Zitat Fahrenbruch, A.L., Bube, R.H.: Fundamentals of Solar Cells, chapter 3. Academic Press Inc., New York (1983)CrossRef Fahrenbruch, A.L., Bube, R.H.: Fundamentals of Solar Cells, chapter 3. Academic Press Inc., New York (1983)CrossRef
Zurück zum Zitat Fonash, S. (Ed.): Homojunction solar cells. In: Solar Cell Device Physics, chapter 4, pp. 155–166. Elsevier, Burlington (2012) Fonash, S. (Ed.): Homojunction solar cells. In: Solar Cell Device Physics, chapter 4, pp. 155–166. Elsevier, Burlington (2012)
Zurück zum Zitat Ghahremani, A., Fathy, A.E.: A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015)CrossRef Ghahremani, A., Fathy, A.E.: A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015)CrossRef
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015)CrossRef Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015)CrossRef
Zurück zum Zitat Gupta, N.D., Janyani, V., Mathew, M., Kumari, M., Singh, R.: Design and fabrication of InGaN/GaN superlattice-based solar cell using photonic crystal structure. J. Nanophotonics 12(4), 1604044 (2018)CrossRef Gupta, N.D., Janyani, V., Mathew, M., Kumari, M., Singh, R.: Design and fabrication of InGaN/GaN superlattice-based solar cell using photonic crystal structure. J. Nanophotonics 12(4), 1604044 (2018)CrossRef
Zurück zum Zitat Hall, R.N.: Electron-hole recombination in silicon. Phys. Rev. 48(3), 245–247 (1952) Hall, R.N.: Electron-hole recombination in silicon. Phys. Rev. 48(3), 245–247 (1952)
Zurück zum Zitat Heidarzadeh, H., Rostami, A., Matloub, S., Dolatyari, M., Rostami, G.: Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl. Opt. 54, 3591–3601 (2015)ADSCrossRef Heidarzadeh, H., Rostami, A., Matloub, S., Dolatyari, M., Rostami, G.: Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl. Opt. 54, 3591–3601 (2015)ADSCrossRef
Zurück zum Zitat Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Plasmon-enhanced performance of an ultrathin silicon solar cell using metal–semiconductor core–shell hemispherical nanoparticles and metallic back grating. Appl. Opt. 55, 1779–1785 (2016)ADSCrossRef Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Plasmon-enhanced performance of an ultrathin silicon solar cell using metal–semiconductor core–shell hemispherical nanoparticles and metallic back grating. Appl. Opt. 55, 1779–1785 (2016)ADSCrossRef
Zurück zum Zitat Ishizaki, K., De Zoysa, M., Tanaka, Y., Jeon, S.-W., Noda, S.: Progress in thin-film silicon solar cells based on photonic-crystal structures. Jpn. J. Appl. Phys. 57(6), 060101 (2018)ADSCrossRef Ishizaki, K., De Zoysa, M., Tanaka, Y., Jeon, S.-W., Noda, S.: Progress in thin-film silicon solar cells based on photonic-crystal structures. Jpn. J. Appl. Phys. 57(6), 060101 (2018)ADSCrossRef
Zurück zum Zitat Khalifa, A.E., AbdElhamid, H., Swillam, M.A.: Optimal design of intermediate reflector layer in micromorph silicon thin-film solar cells. J. Nanophotonics 4(10), 046006-1–046006-9 (2016)ADS Khalifa, A.E., AbdElhamid, H., Swillam, M.A.: Optimal design of intermediate reflector layer in micromorph silicon thin-film solar cells. J. Nanophotonics 4(10), 046006-1–046006-9 (2016)ADS
Zurück zum Zitat Koch, W., Endrös, A.L., Franke, D., Häßler, C., Kalejs, J.P., Möller, H.J.: Bulk crystal growth and wafering for PV. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 205–254. Wiley (2005) Koch, W., Endrös, A.L., Franke, D., Häßler, C., Kalejs, J.P., Möller, H.J.: Bulk crystal growth and wafering for PV. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 205–254. Wiley (2005)
Zurück zum Zitat Kuo, W.-K., Chang, C.-H., Wu, C.-J., Yu, H.-H.: Phase-detection sensitivity enhancement of grating-coupled surface plasmon resonance sensor with light incident at nonzero azimuth angle. J. Nanophotonics 6(1), 063524 (2012)ADSCrossRef Kuo, W.-K., Chang, C.-H., Wu, C.-J., Yu, H.-H.: Phase-detection sensitivity enhancement of grating-coupled surface plasmon resonance sensor with light incident at nonzero azimuth angle. J. Nanophotonics 6(1), 063524 (2012)ADSCrossRef
Zurück zum Zitat Madelung, O.: Semiconductors: Data Handbook, chapter 1. Springer, Berlin (2004)CrossRef Madelung, O.: Semiconductors: Data Handbook, chapter 1. Springer, Berlin (2004)CrossRef
Zurück zum Zitat Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014)CrossRef Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014)CrossRef
Zurück zum Zitat Müller, J., Rech, B., Springer, J., Vanecek, M.: TCO and light trapping in silicon thin film solar cells. Sol. Energy 77(6), 917–930 (2004)ADSCrossRef Müller, J., Rech, B., Springer, J., Vanecek, M.: TCO and light trapping in silicon thin film solar cells. Sol. Energy 77(6), 917–930 (2004)ADSCrossRef
Zurück zum Zitat Quinn, J.J.: Solid State Physics: Principles and Modern Applications, chapter 7. Springer, Berlin (2009) Quinn, J.J.: Solid State Physics: Principles and Modern Applications, chapter 7. Springer, Berlin (2009)
Zurück zum Zitat Shah, A.: Thin-Film Silicon Solar Cells, chapter 8. EPFL Press, Lausanne (2010) Shah, A.: Thin-Film Silicon Solar Cells, chapter 8. EPFL Press, Lausanne (2010)
Zurück zum Zitat Shen, H., Bienstman, P., Maes, B.: Plasmonic absorption enhancement in organic solar cells with thin active layers. J. Appl. Phys. 106(7), 073109 (2009)ADSCrossRef Shen, H., Bienstman, P., Maes, B.: Plasmonic absorption enhancement in organic solar cells with thin active layers. J. Appl. Phys. 106(7), 073109 (2009)ADSCrossRef
Zurück zum Zitat Staebler, D., Wronski, C.R.: Optically induced conductivity changes in discharge produced hydrogenated amorphous silicon. J. Appl. Phys. 51(6), 3262–3268 (1980)ADSCrossRef Staebler, D., Wronski, C.R.: Optically induced conductivity changes in discharge produced hydrogenated amorphous silicon. J. Appl. Phys. 51(6), 3262–3268 (1980)ADSCrossRef
Zurück zum Zitat SZE: Physics of Semiconductor Devices, chapter 1, 2nd edn. Wiley, New York (1981) SZE: Physics of Semiconductor Devices, chapter 1, 2nd edn. Wiley, New York (1981)
Zurück zum Zitat Tavousi, A.: Wavelength-division demultiplexer based on hetero-structure octagonal-shape photonic crystal ring resonators. Optik 179, 1169–1179 (2018)ADSCrossRef Tavousi, A.: Wavelength-division demultiplexer based on hetero-structure octagonal-shape photonic crystal ring resonators. Optik 179, 1169–1179 (2018)ADSCrossRef
Zurück zum Zitat Tavousi, A., Heidarzadeh, H.: Realization of a multichannel drop filter using an ISO centric all-circular photonic crystal ring resonator. Photonics Nanostruct. Fundam. Appl. 31, 52–59 (2018)ADSCrossRef Tavousi, A., Heidarzadeh, H.: Realization of a multichannel drop filter using an ISO centric all-circular photonic crystal ring resonator. Photonics Nanostruct. Fundam. Appl. 31, 52–59 (2018)ADSCrossRef
Zurück zum Zitat Tavousi, A., Mansouri-Birjandi, M.: Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators. Superlattices Microstruct. 114, 23–31 (2018)ADSCrossRef Tavousi, A., Mansouri-Birjandi, M.: Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators. Superlattices Microstruct. 114, 23–31 (2018)ADSCrossRef
Zurück zum Zitat Wang, K.X., et al.: Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12(3), 1616–1619 (2012)ADSCrossRef Wang, K.X., et al.: Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12(3), 1616–1619 (2012)ADSCrossRef
Zurück zum Zitat Yadav, A., Kumar, P.: Enhancement in efficiency of PV cell through P&O algorithm. Int. J. Technol. Res. Eng. 2, 2642–2644 (2015) Yadav, A., Kumar, P.: Enhancement in efficiency of PV cell through P&O algorithm. Int. J. Technol. Res. Eng. 2, 2642–2644 (2015)
Zurück zum Zitat Yan, Y., Cai, F.L., Yang, L.Y., et al.: Light-soaking-free inverted polymer solar cells with an efficiency of 10.5% by compositional and surface modifications to a low-temperature-processed TiO2-transport layer. Adv. Mater. 29, 1604044 (2017)CrossRef Yan, Y., Cai, F.L., Yang, L.Y., et al.: Light-soaking-free inverted polymer solar cells with an efficiency of 10.5% by compositional and surface modifications to a low-temperature-processed TiO2-transport layer. Adv. Mater. 29, 1604044 (2017)CrossRef
Zurück zum Zitat Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H.: Silicon heterojunction solar cell with inter digitated back contacts for a photo conversion efficiency over 26%. Nat. Energy 2, 17023 (2017a)ADSCrossRef Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H.: Silicon heterojunction solar cell with inter digitated back contacts for a photo conversion efficiency over 26%. Nat. Energy 2, 17023 (2017a)ADSCrossRef
Zurück zum Zitat Yoshikawa, K., Yoshida, W., Irie, T., Kawasaki, H., Konishi, K., Ishibashi, H., Asatani, T., Adachi, D., Kanematsu, M., Uzu, H.: Exceeding conversion efficiency of 26% by heterojunction inter digitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017b)CrossRef Yoshikawa, K., Yoshida, W., Irie, T., Kawasaki, H., Konishi, K., Ishibashi, H., Asatani, T., Adachi, D., Kanematsu, M., Uzu, H.: Exceeding conversion efficiency of 26% by heterojunction inter digitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017b)CrossRef
Zurück zum Zitat Zeng, L., et al.: Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93(22), 221105 (2008)ADSCrossRef Zeng, L., et al.: Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93(22), 221105 (2008)ADSCrossRef
Metadaten
Titel
Triangle grating for enhancement the efficiency in thin film photovoltaic solar cells
verfasst von
Bedir Yousif
Mohy Eldin A. Abo-Elsoud
Hagar Marouf
Publikationsdatum
01.08.2019
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 8/2019
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1987-5

Weitere Artikel der Ausgabe 8/2019

Optical and Quantum Electronics 8/2019 Zur Ausgabe