Skip to main content
Erschienen in: Optical and Quantum Electronics 7/2020

01.07.2020

Quantum key distribution with single-particle and Bell state

verfasst von: Huawang Qin, Hao Xu, Wallace K. S. Tang

Erschienen in: Optical and Quantum Electronics | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A quantum key distribution protocol with single-particle and Bell state is proposed, in which one player Alice sends the states from some special single-particles and Bell states, the other player Bob measures these states in the single-particle basis or Bell basis, and then establish their secret key. Through combining the single-particle and Bell state novelly, the error rate of eavesdropping in our protocol can be increased up to \( \frac{3}{8} \). Compared to BB84, our protocol can get higher secure key rate in practice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
Zurück zum Zitat Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)ADSMathSciNetMATH
Zurück zum Zitat Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADS Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADS
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADS Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADS
Zurück zum Zitat Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372, 3953–3956 (2008)ADSMathSciNetMATH Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372, 3953–3956 (2008)ADSMathSciNetMATH
Zurück zum Zitat Bouchard, F., Sit, A., Heshami, K., Fickler, R., Karimi, E.: Round-robin differential-phase-shift quantum key distribution with twisted photons. Phys. Rev. A 98, 010301 (2018)ADS Bouchard, F., Sit, A., Heshami, K., Fickler, R., Karimi, E.: Round-robin differential-phase-shift quantum key distribution with twisted photons. Phys. Rev. A 98, 010301 (2018)ADS
Zurück zum Zitat Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)ADS Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)ADS
Zurück zum Zitat Cao, Y., Zhao, Y.L., Wu, Y., Yu, X.S., Zhang, J.: Time-scheduled quantum key distribution (QKD) over WDM networks. J. Lightw. Technol. 36, 3382–3395 (2018)ADS Cao, Y., Zhao, Y.L., Wu, Y., Yu, X.S., Zhang, J.: Time-scheduled quantum key distribution (QKD) over WDM networks. J. Lightw. Technol. 36, 3382–3395 (2018)ADS
Zurück zum Zitat Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADS Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062324 (2015)ADS
Zurück zum Zitat Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14, 4575–4584 (2015)ADSMathSciNetMATH Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14, 4575–4584 (2015)ADSMathSciNetMATH
Zurück zum Zitat Coles, P.J., Metodiev, E.M., Lutkenhaus, N.: Numerical approach for unstructured quantum key distribution. Nat. Commun. 7, 11712 (2016)ADS Coles, P.J., Metodiev, E.M., Lutkenhaus, N.: Numerical approach for unstructured quantum key distribution. Nat. Commun. 7, 11712 (2016)ADS
Zurück zum Zitat Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADS Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADS
Zurück zum Zitat Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)ADS Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)ADS
Zurück zum Zitat Dusek, M.: Discrimination of the Bell states of qudits by means of linear optics. Opt. Commun. 199, 161–166 (2001)ADS Dusek, M.: Discrimination of the Bell states of qudits by means of linear optics. Opt. Commun. 199, 161–166 (2001)ADS
Zurück zum Zitat Ewert, F., Loock, P.V.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)ADS Ewert, F., Loock, P.V.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)ADS
Zurück zum Zitat Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163–1172 (1997)ADSMathSciNet Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163–1172 (1997)ADSMathSciNet
Zurück zum Zitat Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSMATH Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSMATH
Zurück zum Zitat Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADS Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADS
Zurück zum Zitat Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)ADSMathSciNetMATH Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)ADSMathSciNetMATH
Zurück zum Zitat Hatakeyama, Y., Mizutani, A., Kato, G., Imoto, N., Tamaki, K.: Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys. Rev. A 95, 042301 (2017)ADS Hatakeyama, Y., Mizutani, A., Kato, G., Imoto, N., Tamaki, K.: Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys. Rev. A 95, 042301 (2017)ADS
Zurück zum Zitat Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 43 (2002) Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 43 (2002)
Zurück zum Zitat Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADS Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADS
Zurück zum Zitat Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95, 062313 (2017)ADS Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95, 062313 (2017)ADS
Zurück zum Zitat Inoue, K.: Differential phase-shift quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015) Inoue, K.: Differential phase-shift quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015)
Zurück zum Zitat Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADS Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADS
Zurück zum Zitat Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)MathSciNetMATH Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)MathSciNetMATH
Zurück zum Zitat Kravtsov, K.S., Radchenko, I.V., Kulik, S.P., Molotkov, S.N.: Relativistic quantum key distribution system with one-way quantum communication. Sci. Rep. 8, 6102 (2018)ADS Kravtsov, K.S., Radchenko, I.V., Kulik, S.P., Molotkov, S.N.: Relativistic quantum key distribution system with one-way quantum communication. Sci. Rep. 8, 6102 (2018)ADS
Zurück zum Zitat Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)ADS Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)ADS
Zurück zum Zitat Lai, H., Luo, M.X., Xu, Y.J., Pieprzyk, J., Zhang, J., Pan, L., Orgun, M.A.: Round-robin-differential-phase-shift quantum key distribution based on wavelength division multiplexing. Laser Phys. Lett. 15, 115201 (2018)ADS Lai, H., Luo, M.X., Xu, Y.J., Pieprzyk, J., Zhang, J., Pan, L., Orgun, M.A.: Round-robin-differential-phase-shift quantum key distribution based on wavelength division multiplexing. Laser Phys. Lett. 15, 115201 (2018)ADS
Zurück zum Zitat Li, M., Cvijetic, M.: Continuous-variable quantum key distribution with self-reference detection and discrete modulation. IEEE J. Quantum Electron. 54, 8000408 (2018) Li, M., Cvijetic, M.: Continuous-variable quantum key distribution with self-reference detection and discrete modulation. IEEE J. Quantum Electron. 54, 8000408 (2018)
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADS Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADS
Zurück zum Zitat Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6, 28767 (2016)ADS Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6, 28767 (2016)ADS
Zurück zum Zitat Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)ADS Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)ADS
Zurück zum Zitat Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADS Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADS
Zurück zum Zitat Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADS Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADS
Zurück zum Zitat Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADS Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADS
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADS Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADS
Zurück zum Zitat Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)ADS Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)ADS
Zurück zum Zitat Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92, 060303 (2015)ADS Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92, 060303 (2015)ADS
Zurück zum Zitat Pavicic, M., Bensom, O., Schell, A.W., Wolters, J.: Mixed basis quantum key distribution with linear optics. Opt. Express 25, 23545 (2017)ADS Pavicic, M., Bensom, O., Schell, A.W., Wolters, J.: Mixed basis quantum key distribution with linear optics. Opt. Express 25, 23545 (2017)ADS
Zurück zum Zitat Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014)ADS Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014)ADS
Zurück zum Zitat Scarani, V., Pasquinucci, H.B., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2004)ADS Scarani, V., Pasquinucci, H.B., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2004)ADS
Zurück zum Zitat Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)ADS Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)ADS
Zurück zum Zitat Shen, Y., Zou, H., Tian, L., Chen, P., Yuan, J.: Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 82, 022317 (2010)ADS Shen, Y., Zou, H., Tian, L., Chen, P., Yuan, J.: Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 82, 022317 (2010)ADS
Zurück zum Zitat Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)ADSMathSciNetMATH Shukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)ADSMathSciNetMATH
Zurück zum Zitat Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetMATH Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetMATH
Zurück zum Zitat Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)ADSMathSciNetMATH Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)ADSMathSciNetMATH
Zurück zum Zitat Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 41 (2002) Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 41 (2002)
Zurück zum Zitat Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)ADSMathSciNet Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)ADSMathSciNet
Zurück zum Zitat Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADS Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADS
Zurück zum Zitat Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014a)ADS Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014a)ADS
Zurück zum Zitat Wang, T.Y., Yu, S., Zhang, Y.C., Gu, W.Y., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378, 38–39 (2014b)ADSMATH Wang, T.Y., Yu, S., Zhang, Y.C., Gu, W.Y., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378, 38–39 (2014b)ADSMATH
Zurück zum Zitat Wang, R., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Opt. Lett. 43, 4228–4231 (2018)ADS Wang, R., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Opt. Lett. 43, 4228–4231 (2018)ADS
Zurück zum Zitat Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)ADSMathSciNetMATH Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)ADSMathSciNetMATH
Zurück zum Zitat Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. 16, 910–914 (2007) Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. 16, 910–914 (2007)
Zurück zum Zitat Zhang, Y.C., Li, Z., Yu, S., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)ADS Zhang, Y.C., Li, Z., Yu, S., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)ADS
Metadaten
Titel
Quantum key distribution with single-particle and Bell state
verfasst von
Huawang Qin
Hao Xu
Wallace K. S. Tang
Publikationsdatum
01.07.2020
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 7/2020
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-02451-0

Weitere Artikel der Ausgabe 7/2020

Optical and Quantum Electronics 7/2020 Zur Ausgabe