Skip to main content
Erschienen in: Optical and Quantum Electronics 9/2020

01.09.2020

Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mode interference suppression

verfasst von: Hassan Arman, Saeed Olyaee

Erschienen in: Optical and Quantum Electronics | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hollow-core photonic bandgap fiber for gas sensing with high sensitivity was designed. Some undesirable parameters like mode interference and propagation losses can deteriorate the performance of PBF. By selecting an accurate and reasonable size of the fiber core, consequently modification the shape and size of the first row of holes surrounding the hollow-core, we could improve light intensity profile in the fiber core. According to the simulation results, at a reasonable core radius the relative sensitivity of gas sensor was improved to 96.57%. In addition, by mode interference suppression, we could minimize the effect of mode mismatch. Furthermore, by optimization of fiber structural parameters like lattice constant and air holes diameter, the PBF was single-mode. Considering the operation wavelength λ = 1.55 µm which is approximately equal to the acetylene gas absorption line, this fiber is suitable to be a high sensitivity gas sensor to detect absorbing gases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aghaie, K.Z., Digonnet, M.J.F., Fan, S.: Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model. J. Lightw. Technol. 31(7), 1015–1022 (2013)ADSCrossRef Aghaie, K.Z., Digonnet, M.J.F., Fan, S.: Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model. J. Lightw. Technol. 31(7), 1015–1022 (2013)ADSCrossRef
Zurück zum Zitat Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18, 1354–1364 (2019)CrossRef Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18, 1354–1364 (2019)CrossRef
Zurück zum Zitat Arman, H., Olyaee, S., Mohebzadeh, A.: Gas sensor based on large hollow-core photonic bandgap fiber. Int. J. Opt. Photonics IJOP 9(2), 99–106 (2015) Arman, H., Olyaee, S., Mohebzadeh, A.: Gas sensor based on large hollow-core photonic bandgap fiber. Int. J. Opt. Photonics IJOP 9(2), 99–106 (2015)
Zurück zum Zitat Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)CrossRef Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)CrossRef
Zurück zum Zitat Austin, E., van Brakel, A., Petrovich, M.N., Richardson, D.J.: Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)CrossRef Austin, E., van Brakel, A., Petrovich, M.N., Richardson, D.J.: Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)CrossRef
Zurück zum Zitat Chowdhury, S., Sen, S., Ahmed, K., Paul, B.K., Miah, M.B.A., Asaduzzaman, S., ShadidulIslam, M., IbadulIslam, M.: Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis. Sens. Bio-Sens. Res. 13, 63–69 (2017)CrossRef Chowdhury, S., Sen, S., Ahmed, K., Paul, B.K., Miah, M.B.A., Asaduzzaman, S., ShadidulIslam, M., IbadulIslam, M.: Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis. Sens. Bio-Sens. Res. 13, 63–69 (2017)CrossRef
Zurück zum Zitat Cubillas, A.M., Silva-Lopez, M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)ADSCrossRef Cubillas, A.M., Silva-Lopez, M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)ADSCrossRef
Zurück zum Zitat Filipovic, L., Selberherr, S.: Thermo-Electro-Mechanical simulation of semiconductor metal oxide gas sensors. MDPI J. Mater. 12, 1–37 (2019) Filipovic, L., Selberherr, S.: Thermo-Electro-Mechanical simulation of semiconductor metal oxide gas sensors. MDPI J. Mater. 12, 1–37 (2019)
Zurück zum Zitat Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7378 (2019)ADSCrossRef Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7378 (2019)ADSCrossRef
Zurück zum Zitat Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Evanescent wave gas sensing using microstructure fiber. Opt. Eng. 41(1), 8–9 (2002)ADSCrossRef Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Evanescent wave gas sensing using microstructure fiber. Opt. Eng. 41(1), 8–9 (2002)ADSCrossRef
Zurück zum Zitat Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photon Technol. 15, 1434–1436 (2003)ADSCrossRef Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photon Technol. 15, 1434–1436 (2003)ADSCrossRef
Zurück zum Zitat Hoo, Y.L., Jin, W., Hoo, H.L., Ju, J., Wang, D.N.: Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuator B Chem. 105, 183–186 (2004)CrossRef Hoo, Y.L., Jin, W., Hoo, H.L., Ju, J., Wang, D.N.: Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuator B Chem. 105, 183–186 (2004)CrossRef
Zurück zum Zitat Hoo, Y.L., Jin, W., Xiao, L., Ju, J., Ho, H.L.: Highly sensitive photonic crystal based absorption spectroscopy. Sens. Actuator B 145, 110–113 (2010)CrossRef Hoo, Y.L., Jin, W., Xiao, L., Ju, J., Ho, H.L.: Highly sensitive photonic crystal based absorption spectroscopy. Sens. Actuator B 145, 110–113 (2010)CrossRef
Zurück zum Zitat Hu, L., Zheng, C., Yao, D., Yu, D., Liu, Z., Zheng, J., Wang, Y., Tittel, F.K.: A hollow-core photonic band-gap fiber based methane sensor system capable of reduced mode interference noise. Infrared Phys. Technol. 97, 101–107 (2019)ADSCrossRef Hu, L., Zheng, C., Yao, D., Yu, D., Liu, Z., Zheng, J., Wang, Y., Tittel, F.K.: A hollow-core photonic band-gap fiber based methane sensor system capable of reduced mode interference noise. Infrared Phys. Technol. 97, 101–107 (2019)ADSCrossRef
Zurück zum Zitat Islam, M.I., Ahmed, K., Asaduzzaman, S., Paul, B.K., Bhuiyan, T., Sen, S., Islam, M.S., Chowdhury, S.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017a)CrossRef Islam, M.I., Ahmed, K., Asaduzzaman, S., Paul, B.K., Bhuiyan, T., Sen, S., Islam, M.S., Chowdhury, S.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017a)CrossRef
Zurück zum Zitat Islam, MdI, Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, MdS, Miah, M.B.A., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens. 7(3), 234–245 (2017b)ADSCrossRef Islam, MdI, Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, MdS, Miah, M.B.A., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens. 7(3), 234–245 (2017b)ADSCrossRef
Zurück zum Zitat Lopez-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, New York (2002) Lopez-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, New York (2002)
Zurück zum Zitat Mao, C., Huang, B., Wang, Y., Huang, Y., Zhang, L., Shao, Y., Wang, Y.I.: High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer. Opt. Exp. 26(23), 30108–30116 (2018)ADSCrossRef Mao, C., Huang, B., Wang, Y., Huang, Y., Zhang, L., Shao, Y., Wang, Y.I.: High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer. Opt. Exp. 26(23), 30108–30116 (2018)ADSCrossRef
Zurück zum Zitat Olyaee, S., Arman, H.: Improved gas sensor with air-core photonic bandgap fiber. Front. Optoelectron. 8(3), 314–318 (2015)CrossRef Olyaee, S., Arman, H.: Improved gas sensor with air-core photonic bandgap fiber. Front. Optoelectron. 8(3), 314–318 (2015)CrossRef
Zurück zum Zitat Olyaee, S., Naraghi, A.: Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sens. 3(2), 131–136 (2013)ADSCrossRef Olyaee, S., Naraghi, A.: Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sens. 3(2), 131–136 (2013)ADSCrossRef
Zurück zum Zitat Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik 125(1), 596–600 (2014)ADSCrossRef Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik 125(1), 596–600 (2014)ADSCrossRef
Zurück zum Zitat Olyaee, S., Arman, H., Naraghi, A.: Design, simulation, and optimization of acetylene gas sensor using hollow-core photonic bandgap fiber. Sens. Lett. 13, 1–6 (2015)CrossRef Olyaee, S., Arman, H., Naraghi, A.: Design, simulation, and optimization of acetylene gas sensor using hollow-core photonic bandgap fiber. Sens. Lett. 13, 1–6 (2015)CrossRef
Zurück zum Zitat Park, J., Lee, S., Kim, S., Oh, K.: Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19(3), 1921–1929 (2011)ADSCrossRef Park, J., Lee, S., Kim, S., Oh, K.: Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19(3), 1921–1929 (2011)ADSCrossRef
Zurück zum Zitat Quintero, S.M.M., Valente, L.C.G., Gomes, M.S.P., Silva, H.G., Souza, B.C., Morikawa, S.R.K.: All-Fiber CO2 sensor using hollow core PCF operating in the 2 μm Region. MDPI J. Sens. 18(12), 1–10 (2018) Quintero, S.M.M., Valente, L.C.G., Gomes, M.S.P., Silva, H.G., Souza, B.C., Morikawa, S.R.K.: All-Fiber CO2 sensor using hollow core PCF operating in the 2 μm Region. MDPI J. Sens. 18(12), 1–10 (2018)
Zurück zum Zitat Ritari, T., Tuminen, J., Ludvigsen, H.: Gas sensing using air-guiding photonic bandgap fiber. Opt. Express 12, 4081–4087 (2004)ADS Ritari, T., Tuminen, J., Ludvigsen, H.: Gas sensing using air-guiding photonic bandgap fiber. Opt. Express 12, 4081–4087 (2004)ADS
Zurück zum Zitat Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003)ADSCrossRef Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003)ADSCrossRef
Zurück zum Zitat Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms. Opt. Express 14, 7342–7352 (2006)ADSCrossRef Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms. Opt. Express 14, 7342–7352 (2006)ADSCrossRef
Zurück zum Zitat Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Realistic design of large-hollowcore photonic band-gap fibers with suppressed higher order modes and surface modes. Light Technol. 25, 2440–2447 (2007)CrossRef Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Realistic design of large-hollowcore photonic band-gap fibers with suppressed higher order modes and surface modes. Light Technol. 25, 2440–2447 (2007)CrossRef
Zurück zum Zitat Svelto, O.: Principles of Lasers, Chapter 4, 5th edn. Springer, Boston (2010)CrossRef Svelto, O.: Principles of Lasers, Chapter 4, 5th edn. Springer, Boston (2010)CrossRef
Zurück zum Zitat Thapa, R., Knabe, K., Faheem, M., Naweed, A., Weaver, O.L., Corwin, K.L.: Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006)ADSCrossRef Thapa, R., Knabe, K., Faheem, M., Naweed, A., Weaver, O.L., Corwin, K.L.: Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006)ADSCrossRef
Zurück zum Zitat Yang, F., Jin, W., Cao, Y., Ho, H., Wang, Y.: Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22(11), 24894–24907 (2014)ADSCrossRef Yang, F., Jin, W., Cao, Y., Ho, H., Wang, Y.: Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22(11), 24894–24907 (2014)ADSCrossRef
Metadaten
Titel
Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mode interference suppression
verfasst von
Hassan Arman
Saeed Olyaee
Publikationsdatum
01.09.2020
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 9/2020
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-02538-8

Weitere Artikel der Ausgabe 9/2020

Optical and Quantum Electronics 9/2020 Zur Ausgabe