Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2021

01.11.2021

Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse

verfasst von: Amrit Kumar, Niti Kant, Harjit Singh Ghotra

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With a circularly polarized (CP) Gaussian laser pulse, we examine theoretically the acceleration of electrons due to a combined effect of laser wakefield (LW) and direct laser (DL) in the plasma bubble regime. The CP laser pulse is ideal for DLA, since it allows for better electron trapping in the plasma bubble regime than a linearly polarized (LP) laser pulse. As a result of a CP laser pulse propagation in z direction, the electrons are accelerated in longitudinal direction by the accelerating field (\({\text{W}}_{{\text{z}}}\)) and focused in the transverse direction by the focusing fields (\({\text{W}}_{{\text{x}}}\), \({\text{W}}_{{\text{y}}}\)). The density of plasma medium is about \(\sim 1.8 \times 10^{18} {\text{cm}}^{ - 3}\) which is from a \(99.9\%\) He / \(0.1\%\) N2 neutral mix, laser pulse duration is \(30{\text{f}}s\) and wavelength \(0.8 \mu m\). A bubble radius of over \(20{\mu m}\) is achieved with a CP laser pulse at an intensity on the order of \({\text{a}}_{0} = 7\) (\(\sim 2.14 \times 10^{20} W/{\text{cm}}^{2}\)), although the same can be achieved with an LP laser at a significantly higher intensity. The electron energy gain with a CP laser pulse appears to be above \(3{\text{GeV}}\) at this intensity. CP laser pulse appeared with a lower transverse emittance and a higher energy gain than an LP laser pulse of the same intensity. In comparison to LP laser pulse, CP laser pulse appears to have a more effective acceleration mechanism for LWFA with DLA in the plasma-bubble regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marquès, J.R., Matthieussent, G., Mine, P., Modena, A., Mora, P., Morillo, J., Najmudin, Z.: Observation of Laser Wakefield Acceleration of Electrons. Phys. Rev. Lett. 81(5), 995–998 (1998)ADSCrossRef Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marquès, J.R., Matthieussent, G., Mine, P., Modena, A., Mora, P., Morillo, J., Najmudin, Z.: Observation of Laser Wakefield Acceleration of Electrons. Phys. Rev. Lett. 81(5), 995–998 (1998)ADSCrossRef
Zurück zum Zitat Antonsen, T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204–2207 (1992)ADSCrossRef Antonsen, T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204–2207 (1992)ADSCrossRef
Zurück zum Zitat Arefiev, A.V., Khudik, V.N., Robinson, A.P.L., Shvets, G., Willingale, L., Schollmeier, M.: Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas. Phys. Plasmas 23, 056704 (2016)ADSCrossRef Arefiev, A.V., Khudik, V.N., Robinson, A.P.L., Shvets, G., Willingale, L., Schollmeier, M.: Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas. Phys. Plasmas 23, 056704 (2016)ADSCrossRef
Zurück zum Zitat Avetissian, H.K., Avetissian, A.K., Mkrtchian, G.F., Sedrakian, K.V.: Production of fast ion and nuclei bunches of solid densities from nanolayers by ultrarelativistic laser pulses. Phys. Rev. ST Accel Beams 14, 101301 (2011)ADSCrossRef Avetissian, H.K., Avetissian, A.K., Mkrtchian, G.F., Sedrakian, K.V.: Production of fast ion and nuclei bunches of solid densities from nanolayers by ultrarelativistic laser pulses. Phys. Rev. ST Accel Beams 14, 101301 (2011)ADSCrossRef
Zurück zum Zitat Chang, H.X., Qiao, B., Huang, T.W., Xu, Z., Zhou, C.T., Gy, Y.Q., Yan, X.Q., Zepf, M., He, X.T.: Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Sci. Rep. 7, 45031 (2017)ADSCrossRef Chang, H.X., Qiao, B., Huang, T.W., Xu, Z., Zhou, C.T., Gy, Y.Q., Yan, X.Q., Zepf, M., He, X.T.: Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Sci. Rep. 7, 45031 (2017)ADSCrossRef
Zurück zum Zitat Dabu, R.: High power, high contrast hybrid femtosecond laser system. AIP Conf. Proc. 1852, 070001 (2017)CrossRef Dabu, R.: High power, high contrast hybrid femtosecond laser system. AIP Conf. Proc. 1852, 070001 (2017)CrossRef
Zurück zum Zitat Denavit, J.: Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992)ADSCrossRef Denavit, J.: Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992)ADSCrossRef
Zurück zum Zitat Ferri, J., Davoine, X., Kalmykov, S.Y., Lifschitz, A.: Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions. Phys. Rev. Accel. Beams 19, 101301 (2016)ADSCrossRef Ferri, J., Davoine, X., Kalmykov, S.Y., Lifschitz, A.: Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions. Phys. Rev. Accel. Beams 19, 101301 (2016)ADSCrossRef
Zurück zum Zitat Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., Haberberger, D., Tochitsky, S., Gong, C., Mori, W.B., Joshi, C.: Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012)ADSCrossRef Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., Haberberger, D., Tochitsky, S., Gong, C., Mori, W.B., Joshi, C.: Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012)ADSCrossRef
Zurück zum Zitat Forslund, D.W., Shonk, C.R.: Formation and structure of electrostatic collisionless shocks. Phys. Rev. Lett. 25, 1699–1702 (1970)ADSCrossRef Forslund, D.W., Shonk, C.R.: Formation and structure of electrostatic collisionless shocks. Phys. Rev. Lett. 25, 1699–1702 (1970)ADSCrossRef
Zurück zum Zitat Fortin, P.L., Piche, M., Varin, C.: Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization. J. Phys. b: at. Mol. Opt. Phys. 43(2), 025401 (2009)ADSCrossRef Fortin, P.L., Piche, M., Varin, C.: Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization. J. Phys. b: at. Mol. Opt. Phys. 43(2), 025401 (2009)ADSCrossRef
Zurück zum Zitat Gales, S., Tanaka, K.A., Balabanski, D.L., Negoita, F., Stutman, D., Tesileanu, O., Ur, C.A., Ursescu, D., Andrei, I., Ataman, S., Cernaianu, M.O., D’Alessi, L., Dancus, I., Diaconescu, B., Djourelov, N., Filipescu, D., Ghenuche, P., Ghita, D.G., Matei, C., Seto, K., Zeng, M., Zamfir, N.V.: The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Progr. Phys. 81(9), 094301 (2018)ADSCrossRef Gales, S., Tanaka, K.A., Balabanski, D.L., Negoita, F., Stutman, D., Tesileanu, O., Ur, C.A., Ursescu, D., Andrei, I., Ataman, S., Cernaianu, M.O., D’Alessi, L., Dancus, I., Diaconescu, B., Djourelov, N., Filipescu, D., Ghenuche, P., Ghita, D.G., Matei, C., Seto, K., Zeng, M., Zamfir, N.V.: The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Progr. Phys. 81(9), 094301 (2018)ADSCrossRef
Zurück zum Zitat Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)ADSCrossRef Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)ADSCrossRef
Zurück zum Zitat Ghotra, H.S., Kant, N.: Electron injection for direct acceleration to multi-GeV energy by a Gaussian laser field under the influence of axial magnetic field. Phys. Plasmas 23, 053115 (2016)ADSCrossRef Ghotra, H.S., Kant, N.: Electron injection for direct acceleration to multi-GeV energy by a Gaussian laser field under the influence of axial magnetic field. Phys. Plasmas 23, 053115 (2016)ADSCrossRef
Zurück zum Zitat Ghotra, H.S., Kant, N.: Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction. Laser Phys. Lett. 15, 066001 (2018)ADSCrossRef Ghotra, H.S., Kant, N.: Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction. Laser Phys. Lett. 15, 066001 (2018)ADSCrossRef
Zurück zum Zitat Ghotra, H.S., Jaroszynski, D., Ersfeld, B., Saini, N.S., Yoffe, S., Kant, N.: Transverse electromagnetic Hermite-Gaussian mode-driven direct laser acceleration of electron under the influence of axial magnetic field. Laser Part. Beams 36, 154–161 (2018)ADSCrossRef Ghotra, H.S., Jaroszynski, D., Ersfeld, B., Saini, N.S., Yoffe, S., Kant, N.: Transverse electromagnetic Hermite-Gaussian mode-driven direct laser acceleration of electron under the influence of axial magnetic field. Laser Part. Beams 36, 154–161 (2018)ADSCrossRef
Zurück zum Zitat Joshi, C.: Laser-driven plasma accelerators operating in the self-guided blowout regime. IEEE Trans. Plasma Sci. 45(12), 3134–3146 (2017)ADSCrossRef Joshi, C.: Laser-driven plasma accelerators operating in the self-guided blowout regime. IEEE Trans. Plasma Sci. 45(12), 3134–3146 (2017)ADSCrossRef
Zurück zum Zitat Kim, Y.K., Cho, M.H., Song, H.S., Kang, T., Park, H.J., Jung, M.Y., Hur, M.S.: Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target. Phys. Rev. E 92, 043102 (2015)ADSCrossRef Kim, Y.K., Cho, M.H., Song, H.S., Kang, T., Park, H.J., Jung, M.Y., Hur, M.S.: Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target. Phys. Rev. E 92, 043102 (2015)ADSCrossRef
Zurück zum Zitat Kostyukov, I., Pukhov, A., Kiselev, S.: Phenomenological theory of laser-plasma interaction in bubble regime. Phys. Plasmas 11(11), 5256–5264 (2004)ADSCrossRef Kostyukov, I., Pukhov, A., Kiselev, S.: Phenomenological theory of laser-plasma interaction in bubble regime. Phys. Plasmas 11(11), 5256–5264 (2004)ADSCrossRef
Zurück zum Zitat Li, Y.Y., Gu, Y.J., Zhu, Z., Li, X.F., Ban, H.Y., Kong, Q., Kawata, S.: Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma. Phys. Plasmas 18, 053104 (2011)ADSCrossRef Li, Y.Y., Gu, Y.J., Zhu, Z., Li, X.F., Ban, H.Y., Kong, Q., Kawata, S.: Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma. Phys. Plasmas 18, 053104 (2011)ADSCrossRef
Zurück zum Zitat Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., Silva, L.O.: Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301 (2007)ADSCrossRef Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., Silva, L.O.: Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301 (2007)ADSCrossRef
Zurück zum Zitat Macchi, A., Nindrayog, A.S., Pegoraro, F.: Solitary versus shock wave acceleration in laser-plasma interactions. Phys. Rev. E 85, 046402 (2012)ADSCrossRef Macchi, A., Nindrayog, A.S., Pegoraro, F.: Solitary versus shock wave acceleration in laser-plasma interactions. Phys. Rev. E 85, 046402 (2012)ADSCrossRef
Zurück zum Zitat Malka, G., Lefebvre, E., Miquel, J.L.: Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 3314–3317 (1997)ADSCrossRef Malka, G., Lefebvre, E., Miquel, J.L.: Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 3314–3317 (1997)ADSCrossRef
Zurück zum Zitat Mohammed, J., Ghotra, H.S., Kaur, R., Hafeez, H.Y., Kant, N.: Electron Acceleration in Bubble Regime. AIP Conf. Proc. 1860, 020013 (2017)CrossRef Mohammed, J., Ghotra, H.S., Kaur, R., Hafeez, H.Y., Kant, N.: Electron Acceleration in Bubble Regime. AIP Conf. Proc. 1860, 020013 (2017)CrossRef
Zurück zum Zitat Naseri, N., Bychenkov, V.Y., Rozmus, W.: Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17, 083109 (2010)ADSCrossRef Naseri, N., Bychenkov, V.Y., Rozmus, W.: Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17, 083109 (2010)ADSCrossRef
Zurück zum Zitat Nemeth, K., Shen, B., Li, Y., Shang, H., Crowell, R., Harkay, K.C., Cary, J.R.: Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 100, 095002 (2008)ADSCrossRef Nemeth, K., Shen, B., Li, Y., Shang, H., Crowell, R., Harkay, K.C., Cary, J.R.: Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett. 100, 095002 (2008)ADSCrossRef
Zurück zum Zitat Nesterov, A.V., Niziev, V.G.: Laser beams with axially symmetric polarization. J. Phys. D: Appl. Phys. 33, 1817–1822 (2000)ADSCrossRef Nesterov, A.V., Niziev, V.G.: Laser beams with axially symmetric polarization. J. Phys. D: Appl. Phys. 33, 1817–1822 (2000)ADSCrossRef
Zurück zum Zitat Palmer, C.A.J., Dover, N.P., Pogorelsky, I., Babzien, M., Dudnikov, G.I., Ispiriyan, M., Polyanskiy, M.N., Schreiber, J., Shkolnikov, P., Yakimenko, V., Najmudin, Z.: Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011)ADSCrossRef Palmer, C.A.J., Dover, N.P., Pogorelsky, I., Babzien, M., Dudnikov, G.I., Ispiriyan, M., Polyanskiy, M.N., Schreiber, J., Shkolnikov, P., Yakimenko, V., Najmudin, Z.: Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011)ADSCrossRef
Zurück zum Zitat Phuoc, K.T., Corde, S., Fitour, R., Shah, R., Albert, F., Rousseau, J.-P., Burgy, F., Rousse, A., Seredov, V., Pukhov, A.: Analysis of wakefield electron orbits in plasma wiggler. Phys. Plasmas 15, 073106 (2008)ADSCrossRef Phuoc, K.T., Corde, S., Fitour, R., Shah, R., Albert, F., Rousseau, J.-P., Burgy, F., Rousse, A., Seredov, V., Pukhov, A.: Analysis of wakefield electron orbits in plasma wiggler. Phys. Plasmas 15, 073106 (2008)ADSCrossRef
Zurück zum Zitat Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)ADSCrossRef Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)ADSCrossRef
Zurück zum Zitat Pukhov, A., Gordienko, S., Kiselev, S., Kostyukov, I.: The bubble regime of laser-plasma acceleration: monoenergetic electrons and the scalability. Plasma Phys. Control. Fusion 46, B179–B186 (2004)CrossRef Pukhov, A., Gordienko, S., Kiselev, S., Kostyukov, I.: The bubble regime of laser-plasma acceleration: monoenergetic electrons and the scalability. Plasma Phys. Control. Fusion 46, B179–B186 (2004)CrossRef
Zurück zum Zitat Sawaf, S., Tawfik, W.: Analysis of heavy elements in water with high sensitivity using laser induced breakdown spectroscopy. Optoelectron. Adv. Mater. 8, 414–417 (2014) Sawaf, S., Tawfik, W.: Analysis of heavy elements in water with high sensitivity using laser induced breakdown spectroscopy. Optoelectron. Adv. Mater. 8, 414–417 (2014)
Zurück zum Zitat Singh, P.K., Pathak, V.B., Shin, J.H., Choi, I.W., Nakajima, K., Lee, S.K., Sung, J.H., Lee, H.W., Rhee, Y.J., Aniculaesei, C., Kim, C.M., Pae, K.H., Cho, M.H., Hojbota, C., Lee, S.G., Mollica, F., Malka, V., Ryu, C.M., Kim, H.T., Nam, C.H.: Electrostatic shock acceleration of ions in near-critical-density plasma driven by a femtosecond petawatt laser. Sci. Rep. 10, 18452 (2020)CrossRef Singh, P.K., Pathak, V.B., Shin, J.H., Choi, I.W., Nakajima, K., Lee, S.K., Sung, J.H., Lee, H.W., Rhee, Y.J., Aniculaesei, C., Kim, C.M., Pae, K.H., Cho, M.H., Hojbota, C., Lee, S.G., Mollica, F., Malka, V., Ryu, C.M., Kim, H.T., Nam, C.H.: Electrostatic shock acceleration of ions in near-critical-density plasma driven by a femtosecond petawatt laser. Sci. Rep. 10, 18452 (2020)CrossRef
Zurück zum Zitat Sinibaldi, G., Occhicone, A., Pereira, F.A., Caprini, D., Marino, L., Michelotti, F., Casciola, C.M.: Laser induced cavitation: plasma generation and breakdown shockwave. Phys. Fluids 31, 103302 (2019)ADSCrossRef Sinibaldi, G., Occhicone, A., Pereira, F.A., Caprini, D., Marino, L., Michelotti, F., Casciola, C.M.: Laser induced cavitation: plasma generation and breakdown shockwave. Phys. Fluids 31, 103302 (2019)ADSCrossRef
Zurück zum Zitat Sprangle, P., Esarey, E., Ting, T., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. AIP Conf. Proc. 193, 376–387 (1989)ADSCrossRef Sprangle, P., Esarey, E., Ting, T., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. AIP Conf. Proc. 193, 376–387 (1989)ADSCrossRef
Zurück zum Zitat Sun, G.Z., Ott, E., Lee, Y.C., Guzdar, P.: Self-focusing of short intense pulses in plasmas. The Phys. of Fluids 30, 526–532 (1987)ADSCrossRef Sun, G.Z., Ott, E., Lee, Y.C., Guzdar, P.: Self-focusing of short intense pulses in plasmas. The Phys. of Fluids 30, 526–532 (1987)ADSCrossRef
Zurück zum Zitat Varaki, M.A.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Modern Phys. Lett. B 32(20), 1850225 (2018)MathSciNetCrossRef Varaki, M.A.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Modern Phys. Lett. B 32(20), 1850225 (2018)MathSciNetCrossRef
Zurück zum Zitat Varaki, M.A.: Electron acceleration of a surface wave propagating in wiggler-assisted plasma. Modern Phys. Lett. B 33(23), 1950267 (2019)MathSciNetCrossRef Varaki, M.A.: Electron acceleration of a surface wave propagating in wiggler-assisted plasma. Modern Phys. Lett. B 33(23), 1950267 (2019)MathSciNetCrossRef
Zurück zum Zitat Wang, T., Khudik, V., Arefiev, A., Shvets, G.: Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses. Phys. Plasmas 26, 083101 (2019)ADSCrossRef Wang, T., Khudik, V., Arefiev, A., Shvets, G.: Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses. Phys. Plasmas 26, 083101 (2019)ADSCrossRef
Zurück zum Zitat Wen, M., Salamin, Y.I., Keitel, C.H.: Electron acceleration in direct laser-solid interaction far beyond the ponderomotive limit. Phys. Rev. Applied 13, 034001 (2020)ADSCrossRef Wen, M., Salamin, Y.I., Keitel, C.H.: Electron acceleration in direct laser-solid interaction far beyond the ponderomotive limit. Phys. Rev. Applied 13, 034001 (2020)ADSCrossRef
Zurück zum Zitat Wong, L.J., Hong, K.H., Carbajo, S., Fallahi, A., Iot, P., Soljacic, M., Joannopoulos, J.D., Kartner, F.X., Kaminer, I.: Laser-induced linear-field particle acceleration in free space. Nature 7, 11159 (2017) Wong, L.J., Hong, K.H., Carbajo, S., Fallahi, A., Iot, P., Soljacic, M., Joannopoulos, J.D., Kartner, F.X., Kaminer, I.: Laser-induced linear-field particle acceleration in free space. Nature 7, 11159 (2017)
Zurück zum Zitat Zhang, S.Y.: Accurate correction field of circularly polarized laser and its acceleration effect. J. at. Mol. Sci. 1(4), 308–317 (2010) Zhang, S.Y.: Accurate correction field of circularly polarized laser and its acceleration effect. J. at. Mol. Sci. 1(4), 308–317 (2010)
Zurück zum Zitat Zhang, X., Khudik, V.N., Shvets, G.: Synergistics Laser-Wakefield and Direct-Laser Acceleration in the Plasma-Bubble Regime. Phys. Rev. Lett. 114, 184801 (2015)ADSCrossRef Zhang, X., Khudik, V.N., Shvets, G.: Synergistics Laser-Wakefield and Direct-Laser Acceleration in the Plasma-Bubble Regime. Phys. Rev. Lett. 114, 184801 (2015)ADSCrossRef
Zurück zum Zitat Zhang, X., Wang, T., Khudik, V.N., Bernstein, A.C., Downer, M.C., Shvets, G.: Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Control. Fusion 60, 105002 (2018)ADSCrossRef Zhang, X., Wang, T., Khudik, V.N., Bernstein, A.C., Downer, M.C., Shvets, G.: Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Control. Fusion 60, 105002 (2018)ADSCrossRef
Metadaten
Titel
Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse
verfasst von
Amrit Kumar
Niti Kant
Harjit Singh Ghotra
Publikationsdatum
01.11.2021
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2021
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-03241-y

Weitere Artikel der Ausgabe 11/2021

Optical and Quantum Electronics 11/2021 Zur Ausgabe