Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2021

01.11.2021

Construction of optical solitons of magneto-optic waveguides with anti-cubic law nonlinearity

verfasst von: Muhammad Imran Asjad, Naeem Ullah, Hamood Ur Rehman, Mustafa Inc

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two efficient integration schemes, new extended hyperbolic function and generalized tanh are employed to discover optical soliton solutions to magneto-optic waveguides that retains anti-cubic form of nonlinear refractive index. Bright, dark, periodic singular, singular, and combo soliton solutions have created. These solutions expose the comprehensive variety of soliton solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-Kotera equations. Comp. Appl. Math. 38(4), 1–22 (2019)MathSciNetCrossRef Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-Kotera equations. Comp. Appl. Math. 38(4), 1–22 (2019)MathSciNetCrossRef
Zurück zum Zitat Akinyemi, L.: Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solitons. Optik 243, 167477 (2021)CrossRefADS Akinyemi, L.: Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solitons. Optik 243, 167477 (2021)CrossRefADS
Zurück zum Zitat Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth order time-fractional Cahn-Hillard equation. Math. Meth. Appl. Sci. 43(7), 4050–4074 (2020)MathSciNetMATH Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth order time-fractional Cahn-Hillard equation. Math. Meth. Appl. Sci. 43(7), 4050–4074 (2020)MathSciNetMATH
Zurück zum Zitat Ali Akbar, M., Akinyemi, L., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M..M..A.., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 104228 (2021)CrossRef Ali Akbar, M., Akinyemi, L., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M..M..A.., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 104228 (2021)CrossRef
Zurück zum Zitat Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schrdinger model with efficient computational techniques. Opt. Quantum Electron. 53, 406 (2021c)CrossRef Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schrdinger model with efficient computational techniques. Opt. Quantum Electron. 53, 406 (2021c)CrossRef
Zurück zum Zitat Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system with reliable analytical mathematical approaches. Commun. Theor. Phys. 73(8), 085005 (2021a)MathSciNetCrossRefADS Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system with reliable analytical mathematical approaches. Commun. Theor. Phys. 73(8), 085005 (2021a)MathSciNetCrossRefADS
Zurück zum Zitat Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/ diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98, 489–499 (2019)CrossRef Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/ diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98, 489–499 (2019)CrossRef
Zurück zum Zitat Dai, C.Q., Wang, Y.Y., Fan, Y., Zhang, J.F.: Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Modell. 80, 506–515 (2020)MathSciNetCrossRef Dai, C.Q., Wang, Y.Y., Fan, Y., Zhang, J.F.: Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Modell. 80, 506–515 (2020)MathSciNetCrossRef
Zurück zum Zitat Dai, C.Q., Zhou, G.-Q., Chen, R.-P., Lai, X.-J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)MathSciNetCrossRef Dai, C.Q., Zhou, G.-Q., Chen, R.-P., Lai, X.-J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)MathSciNetCrossRef
Zurück zum Zitat Dotsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22(1), 240–253 (2005)CrossRefADS Dotsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22(1), 240–253 (2005)CrossRefADS
Zurück zum Zitat Fedele, R., Schamel, H., Karpman, V.I., Shukla, P.K.: Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity. J. Phys. A 36, 1169–1173 (2003)MathSciNetCrossRefADS Fedele, R., Schamel, H., Karpman, V.I., Shukla, P.K.: Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity. J. Phys. A 36, 1169–1173 (2003)MathSciNetCrossRefADS
Zurück zum Zitat Guzman, J.V., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatiotemporal dispersion. J. Optoelectron. Adv. Mater. 16(9–10), 1063–1070 (2014) Guzman, J.V., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatiotemporal dispersion. J. Optoelectron. Adv. Mater. 16(9–10), 1063–1070 (2014)
Zurück zum Zitat Haider, T.: A review of magneto-optic effects and its application. Int. J. Electromagn. Appl. 7(1), 17–24 (2017) Haider, T.: A review of magneto-optic effects and its application. Int. J. Electromagn. Appl. 7(1), 17–24 (2017)
Zurück zum Zitat Hasegawa, K., Miyazaki, Y.: Magneto-optic devices using interaction between magnetostatic surface wave and optical guided wave. Japenese J. Appl. Phys. 31, 230 (1992)CrossRefADS Hasegawa, K., Miyazaki, Y.: Magneto-optic devices using interaction between magnetostatic surface wave and optical guided wave. Japenese J. Appl. Phys. 31, 230 (1992)CrossRefADS
Zurück zum Zitat Khan, S.: Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik 200, 163405 (2020)CrossRefADS Khan, S.: Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik 200, 163405 (2020)CrossRefADS
Zurück zum Zitat Khater, M.M., Inc, M., Attia, R.A., Lu, D., Almohsen, B.: Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. J. Taibah Univ. Sci. 14(1), 1554–1562 (2020)CrossRef Khater, M.M., Inc, M., Attia, R.A., Lu, D., Almohsen, B.: Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. J. Taibah Univ. Sci. 14(1), 1554–1562 (2020)CrossRef
Zurück zum Zitat Kudryashov, N.A.: First integrals and general solution of the traveling wave reduction for Schrodinger equation with anti-cubic nonlinearity. Optik 185, 665–671 (2019)CrossRefADS Kudryashov, N.A.: First integrals and general solution of the traveling wave reduction for Schrodinger equation with anti-cubic nonlinearity. Optik 185, 665–671 (2019)CrossRefADS
Zurück zum Zitat Nestor, S., Houwe, A., Betchewe, G., Inc, M., Doka, S.Y.: A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation. Phys. Scripta 95, 085108 (2020)CrossRefADS Nestor, S., Houwe, A., Betchewe, G., Inc, M., Doka, S.Y.: A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation. Phys. Scripta 95, 085108 (2020)CrossRefADS
Zurück zum Zitat Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, J., He, Y.: Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity. Phys. Lett. A 383(228), 2579–2583 (2019)MathSciNetCrossRefADS Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, J., He, Y.: Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity. Phys. Lett. A 383(228), 2579–2583 (2019)MathSciNetCrossRefADS
Zurück zum Zitat Raza, N., et al.: Dynamical analysis and phase portraits of two-mode waves in different media. Results Phys. 19, 103650 (2020)CrossRef Raza, N., et al.: Dynamical analysis and phase portraits of two-mode waves in different media. Results Phys. 19, 103650 (2020)CrossRef
Zurück zum Zitat Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions. Ain Shams Eng. J. 11, 1237–1241 (2020)CrossRef Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions. Ain Shams Eng. J. 11, 1237–1241 (2020)CrossRef
Zurück zum Zitat Rehman, H.U., Ullah, N., Imram, M.A.: Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method. Optik 226(2), 15378 (2021b)ADS Rehman, H.U., Ullah, N., Imram, M.A.: Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method. Optik 226(2), 15378 (2021b)ADS
Zurück zum Zitat Rehman, H.U., Ullah, N., Imran, M.A.: Highly dispersive optical solitons using Kudryashov’s method. Optik 199, 163349 (2019)CrossRefADS Rehman, H.U., Ullah, N., Imran, M.A.: Highly dispersive optical solitons using Kudryashov’s method. Optik 199, 163349 (2019)CrossRefADS
Zurück zum Zitat Rehman, H.U., Ullah, N., Imran, M.A., Akgul, A.: On solutions of the Newell-Whitehead-Segel Equation and Zeldovich Equation. Math. Methods Appl. Sci. 44, 7134–7149 (2021a)MathSciNetCrossRef Rehman, H.U., Ullah, N., Imran, M.A., Akgul, A.: On solutions of the Newell-Whitehead-Segel Equation and Zeldovich Equation. Math. Methods Appl. Sci. 44, 7134–7149 (2021a)MathSciNetCrossRef
Zurück zum Zitat Rehman, H.U., Imram, M.A., Ullah, N., Akgul, A.: Exact solutions of convective-diffusive Cahn-Hilliard equation using extended direct algebraic method. Numerical Methods for Partial Differential Equations, 10 Number (2021c). https://doi.org/10.1002/num.22622 Rehman, H.U., Imram, M.A., Ullah, N., Akgul, A.: Exact solutions of convective-diffusive Cahn-Hilliard equation using extended direct algebraic method. Numerical Methods for Partial Differential Equations, 10 Number (2021c). https://​doi.​org/​10.​1002/​num.​22622
Zurück zum Zitat Shang, Y.: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations. Chaos Solitons Fractals 36(3), 762–771 (2008)MathSciNetCrossRefADS Shang, Y.: The extended hyperbolic function method and exact solutions of the long-short wave resonance equations. Chaos Solitons Fractals 36(3), 762–771 (2008)MathSciNetCrossRefADS
Zurück zum Zitat Shang, Y., Huang, Y., Yuan, W.: The extended hyperbolic functions method and new exact solutions to the Zakharov equations. Appl. Math. Comput. 200, 110–122 (2008)MathSciNetMATH Shang, Y., Huang, Y., Yuan, W.: The extended hyperbolic functions method and new exact solutions to the Zakharov equations. Appl. Math. Comput. 200, 110–122 (2008)MathSciNetMATH
Zurück zum Zitat Shoji, Y., Mizumoto, T.: Waveguide magneto-optical devices for photonics integrated circuits. Opt. Mater. Express 8(8), 2387–2394 (2018)CrossRefADS Shoji, Y., Mizumoto, T.: Waveguide magneto-optical devices for photonics integrated circuits. Opt. Mater. Express 8(8), 2387–2394 (2018)CrossRefADS
Zurück zum Zitat Ullah, N., Rehman, H.U., Imran, M.A., Abdeljawad, T.: Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities. Results Phys. 17, 103021 (2020)CrossRef Ullah, N., Rehman, H.U., Imran, M.A., Abdeljawad, T.: Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities. Results Phys. 17, 103021 (2020)CrossRef
Zurück zum Zitat Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)CrossRef Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)CrossRef
Zurück zum Zitat Wazwaz, A.M.: A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals 37(4), 1136–1142 (2008)MathSciNetCrossRefADS Wazwaz, A.M.: A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals 37(4), 1136–1142 (2008)MathSciNetCrossRefADS
Zurück zum Zitat Yan, Z., Chow, K.W., Malomed, B.A.: Exact stationary wave patterns in three coupled nonlinear Schrodinger/Gross-Pitaevskii equations. Chaos Solitons and Fractals 42(5), 3013–3019 (2009)MathSciNetCrossRefADS Yan, Z., Chow, K.W., Malomed, B.A.: Exact stationary wave patterns in three coupled nonlinear Schrodinger/Gross-Pitaevskii equations. Chaos Solitons and Fractals 42(5), 3013–3019 (2009)MathSciNetCrossRefADS
Zurück zum Zitat Zayed, E.M.E., Shohib, R.M.A., El-Horbaty, M.M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A.K., Belic, M.R.: Solitons in magneto-optic waveguides with quadratic cubic nonlinearity. Phys. Lett. A 384(25), 126456 (2020)MathSciNetCrossRef Zayed, E.M.E., Shohib, R.M.A., El-Horbaty, M.M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A.K., Belic, M.R.: Solitons in magneto-optic waveguides with quadratic cubic nonlinearity. Phys. Lett. A 384(25), 126456 (2020)MathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., El-Horbaty, M.M., Biswas, A., Guggilla, P., Ekici, M., Alzahrani, A.K., Belic, M.R.: Solitons in magneto-optic waveguides with parabolic law nonlinearity. Optik 222, 165314 (2020) Zayed, E.M.E., Alngar, M.E.M., El-Horbaty, M.M., Biswas, A., Guggilla, P., Ekici, M., Alzahrani, A.K., Belic, M.R.: Solitons in magneto-optic waveguides with parabolic law nonlinearity. Optik 222, 165314 (2020)
Metadaten
Titel
Construction of optical solitons of magneto-optic waveguides with anti-cubic law nonlinearity
verfasst von
Muhammad Imran Asjad
Naeem Ullah
Hamood Ur Rehman
Mustafa Inc
Publikationsdatum
01.11.2021
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2021
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-03288-x

Weitere Artikel der Ausgabe 11/2021

Optical and Quantum Electronics 11/2021 Zur Ausgabe